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Introduction and summary

In this note we present two new and interesting proofs of the
asymptotic normality of the distribution of the number of empty cells
in occupancy problems. More specifically, we suppose that we have a
random sample of n observations from a multinomial distribution on N
equiprobable cells. Then, letting s be the number of empty cells, we
will show that as », N—o so that n/N**—oco and n/N—1/3log N
——oo, then the distribution of V=(s— E(s))/s, has the standard normal
distribution. We accomplish this by estimating the factorial cumulants
of V. Since the cumulants are linear combinations of the factorial cu-
mulants (with fixed coefficients), the factorial cumulants can easily be
exploited for this purpose. In particular, in order to show that V has
asymptotically the standard normal distribution, it suffices to show that
all cumulants beyond the second tend to zero as m, N—oco. In F. N.
David and D. E. Barton [1], the factorial cumulants were exploited to
show that V is asymptotically normal when n/N—c¢, a constant. Their
method of estimating the factorial cumulants is somewhat different than
that employed here. Using the closely related but substantially more
complicated method of moments, I. Weiss [9] and M. Okamoto [5] es-
tablished the asymptotic normality of V under the hypothesis n/N—-c,
some constant. The asymptotic normality of V under the hypothesis
n/N—c has been established by Sevast’yanov and Chistyakov [8] using
saddle point methods. In fact, Sevast’yanov and Chistyakov examined
a multivariate extension of this problem. A. Rényi [6] obtained the
most general result dealing with the asymptotic normality of V. Em-
ploying characteristic functions, he established that V has an asymp-
totically standard normal distribution whenever n/N'*—oco and n/N —
log N— —co. Thus, Rényi’s results are in fact more general than those
presented herein. Despite this, we still felt that it was worthwhile to
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present these arguments, since they are of distinct methodological in-
terest and far more elementary than those of Rényi. In addition, de-
spite the elementary character, they still lead to more general conclu-
sions than all but Rényi’s result. Some of the ideas in this manuscript
are consequences of conversations and correspondence with Professor
N. G. de Bruijn of Eindhoven, Netherlands. The second proof of The-
orem 1 is a slight extension of an unpublished note of de Bruijn’s [4].

2. The asymptotic normality of the distribution of the number of
empty cells

The probability distribution of s is well-known and given by

Pn,N S=0,1,"',’n,

where ay_,, are the Stirling numbers of the second kind defined by
k
xk=2 aj,kx(j) .
Jj=1
The factorial moments of s are given by
(1) p=N@(1=2)", m=0,1,2,---,

where N =N(N—1)..-(N—m+1). Consequently the factorial moment
generating function

(2) oas(®=3 Lo pr= 53 (N)(1_ 2 Ygn,

Let K, y(t) be the corresponding factorial cumulant generating function,
that is, ’

(8) Ko () =10g gnr(t)= 33 emt™/m!.,

where kin;=km(n, N) are the factorial cumulants of s. The factorial
cumulants are related to the cumulants in the same way as the facto-
rial moments, that is,

(4) ”m=§ 5,miLs]
where a, , are the Stirling numbers of the second kind. For m=2, the

mth cumulant of V is x,/«]*; thus, we need only show that x,/s]*—0
for m>2 to establish the asymptotic normality of V. As a preliminary
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step, we now produce two proofs on the remarkable fact that £,=O(N),
m=1,2,--- as N—oo with no conditions on n whatever.

THEOREM 1. The mth cumulant of s, x,=O(N), N—oo, for m=
1,2,---.

FIRST PROOF. We proceed by first establishing two auxiliary lem-
mas.

LEMMA 1. If P(x) i8 a polynomial of degree p>0, them, for any
M=p and 0<0<1, Q(x)=(M/6)P(x)—xP'(x) has at least as many real
zeros as P(x). If P(x) has only real roots, then Q(x) has only real roots.

PrROOF. Write
— M/ _d_ (w“’/’P(x)) , >0
dx
Q(x)=1 (M/6)P(x) , x=0
(—zyen & (—g)y o P@), @<0.
dx

Q(z) is a polynomial of degree p. Since M/0>p, as x— + oo, (+2) *°P(x)
—0. Thus for any a>0, the intervals (@, ), (—oo, —a) have at least
as many zeros of d/dx((xx) *’P(x)) as they have of P(x). Conse-
quently, Q(x) has at least as many real zeros as P(x).

LEMMA 2. If P(x) is a polynomial of degree p>0 with real roots
6, <2, < - - Sw,<0, then the roots of Q(x) are negative and do not exceed x,.

ProoF. For P(x)#0, every zero of Q(z) is a solution of

P'(x) _ M

5 = P(x)=

(5) Pa) dm log P(z) =

For >0, we can assume P(x)>0 with no loss of generality. Then,
dlogP(x) Z 1 i 1 _ » <M M
dx 1 (x—x) =1 2—2, T—T, 0x

Thus there can be no positive roots of Q(x). Trivially, zero is not a
root of Q(x). Hence all real roots are negative. For <0, P'(x)/P(x)
has a simple pole at every zero of P(x) (including multiple zeros). The
conclusion is now immediate.

We now proceed to prove the theorem. Let

(6) poy=a+ty=3 (Ve
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a polynomial of degree N with every root —1. Then let

(7) Pl(t)=P(t)——1§,~ P(t)

Thus, Py(t) is a monic polynomial of degree N—1 with all roots —1.
We now proceed inductively. For n=1, define P,,,(t)=P,(t)—(¢/N)P.(t).
Carrying out the induction and comparing with (2), we readily see that

(8) Pty=3 (V)(1-2 ) =gt

Now let M=N-1, ¢=(N—1)/N. Then, define Q,(t)=NP,, ()=
NP,(t)—tP/(t). ¢(t) satisfies the hypotheses of Lemma 1 and therefore
has N—1 real roots. Thus Py(t) has N—1 real roots. Clearly, each
P,(t) is of degree N—1. By induction, Q,(t) satisfies the hypotheses of
Lemma 1 for each » and has N—1 real roots. From Lemma 2, each
¢a(t) has all of its roots <—1 and consequently for n=1, P,(t) has all
roots <—1. Hence, N~'log P,(t)=N""'log ¢, x(t)=K, y(t) is analytic in
|t|<1. Thus, for |t|<1,

(9) Re(—-log P,.(t))=%log|P,.(t)|§—]{,- 5 (Mier

=log 1+|t|)<log 2
We can now apply a well-known theorem of Carathéodory (see [2], [3] and
[7]), that is, if f(z):jé a,;2’, |2|<1 and Re[f(z)]<1 for |z|<1, then
la;|=2 for all 5. Thus, since

Kon(®)=3 st
we have
| k0 | S Nvllog 4,
the conclusion now follows from (4).

Remark. P,—1) has an interesting combinatorial interpretation.
It is easily seen that P,(—1) is the probability that no cell is empty.
Thus for n<N, P,(—1)=0, Py(—1)=N!/N?.
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SECOND PROOF. We employ the following introductory lemma.

LEMMA 3. If P(t) is a polynomial of degree p, with real roots in
[—1, 0], then (t(d/dt))"P(t) has p real roots in [—1, 0] for n=1,2,---.

Proor. Clearly tP'(t) is of degree p. The roots of P'(t) always
fall in the same interval as those of P(t); the factor ¢ introduces a root
at zero. The conclusion the follows for (¢(d/dt))"P(t).

The proof of the theorem follows. Let P(t)=(1+t)”=é (1:, )t".
Then let

©10) Pi(t)= (t %)ﬂP(t)= ﬁo (1:’ )v"t" .

P(t) has all zeros at —1, P,(t) has a simple root at zero for n=1. The
remaining N—1 roots lie in [—1, 0). Then, write :

11) P,,(t):N"t’jj: t—7), —1=1,<0.
Thus, from (2) and (10),

onnd=23 (V) (2o =L Pt

Hence,
N-1 N-1 ‘
(12) ean®)=t""T1 ¢ =p)=T1 A—72) .
Thus for |t|<1, |7t]|<1, j=1,2,---, N—1 and
N-1
K..»(®)= 3 log (1— 7,1

J
=5 <_nt_ﬂ_ﬁ_...)

i= 2 3
and from (3) we see that
K[,] — _N—-l T_v.
! PES Y]
Hence,
_ o —1
(14) o) eglsE S Ip1s =L
y ia1 )

establishing the theorem.

COROLLARY. .1;=N2_‘,1 Y;, where Y; are independent Bernoulli random
j=1
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variables, with P{Y,=1}=—y,, j=1,2,.---, N—1.

PROOF. From (12),

enr®=T] L= 1)

and —1=<7,<0. Now the factorial moment generating function for a
Bernoulli random variable Y is

E[1+)"}=(1-p)+p(1+t)=1+pt,

where P{Y=1}=p, P{Y=0}=1—p. The conclusion follows on setting
P=—1.
We now establish the asymptotic normality of V=(s— E(s))/s,.

THEOREM 2. V is asymptotically distributed by the standard normal
distribution whenever as N— oo,

1. lim-™ =¢>0,
1mN c>

N—>oo

s Mmo_ n
2. Ilvljrolow—o and Nm—-»oo
or
3. M 3n

N , N——logN—+—oo .

PROOF. In order to show that V has asymptotically (N, n— oo) the
standard normal distribution, we need to show that «,/s*—0 for m>2.
From Theorem 1, this is equivalent to showing that N/s*—0 for m>2
and this reduces to showing that N/«¥*—0. Moreover, elementary cal-
culations show that

_ . _l n— _L 2n _ —l n— —L n
(18 m=N [(1 N‘> (1 N) ] N[(l N) <1 N) ]
Let n/N=a(N) and since o*(N)=0(N) for every positive integer k, we
have .
(16) £;=— Nae ™+ 0(a?) + Ne~*(1 —e~*)+O(a)
=Ne *(1—e *—ae™*)+0(¢(a)) ,

where ¢(a)=max (@, a®). Thus, the conclusion holds for a—0 as N— oo,
whenever n/N*#— o0 and for a— oo as N—oo provided 3n/N—log N—
—oo, The conclusion is obvious if a has a positive limit as N— oo.
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