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Summary

The probability of misclassification inherent in the use of a linear
discriminant function is not necessarily known to the experimenter using
such a function. Various estimators calculated from the sample used
to generate the sample discriminant function have been proposed. The
purpose of this paper is to evaluate and to compare several of these
estimators by using unconditional mean square error as the criterion.
Discussion is restricted to the case where each of the distributions is
univariate normal with common variance.

1. Introduction

Let z; (=1,2,---,n,) and #,; (=1, 2, -+, n,) denote two independ-
ent random samples from normal populations /7, and /I, having means
w and g (<) and variance ¢*. Let X be a subsequently and inde-
pendently (of the x,;) drawn observation from either 71, or II,. To
classify X as belonging to I, or IT,, the linear discriminant function,
W, may be used. It takes the form

1.1) W=[X—%(EI+E2)](EI—@)/02 when o* is known
=[X—.;.(a,+az)](@l—5z)/sz when & is unknown ,

where ,=n;! Zi‘, z;, (t=1,2), and s*=(n,+n,—2)* i‘, Eij (xy—x)*. Com-
Jj=1 i=1 j=1

monly, X is classified as belonging to 17, or II, as the observed value

* This paper is partially based on the Ph.D. thesis of N. Sedransk [7] at Iowa State
University.
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of W is positive or negative. Thus the classification procedure may be
written as

(1.2) Classify X as belonging to 7, if X<(%,+%;)/2 and z,<Z,
or if X>(Z,+7%,)/2 and &, >7,; classify X as belonging to
11, otherwise.

Two distinct probabilities of misclassification, conditional (on z; and
%,) and unconditional, are relevant. First, the conditional probability
that X be misclassified as belonging to I7, when X is from I7, is given by

(1.3) P2=Pr{X<-;—(5§1+Ez)|:Tcl,§z, Xenz} when %, <%,

=Pr {X>—;—(§1+Ez)l§“ (—tz, Xe Hz] when E|>Eg B
An alternative form of equation (1.3) is

(1.4) P,=(D<[—;—(Zv‘l+§g)— pz] / a) when % <%,

=1—@<[%(51+52)_ﬂ2]/”> when %,>%, ,

where @ is the cumulative distribution function of a standard normal
random variable, N(0,1). Second, the unconditional probability of mis-
classification is

(L.5) *—Pr 4X<%(§1+Ez), 5:,<E2|XEII,}
+Pr{X>%@,+@), F>F| X e 17,] ,

which is, by definition, the expectation (with respect to %, and ;) of P;.
It may be noted that since the numbering of the populations is arbi-
trary, the problem treated here is symmetric; and hence only the error
of the second kind (classifying X as belonging to /7, when X comes from
II,) is considered.

A third probability of misclassification is of interest for purposes of
comparison. If all the parameters, g, s (1 <pg) and ¢* should be known,
the following classification procedure might be used:

(1.6) Classify X as belonging to 7, if X<(p+p)/2;
classify X as belonging to I, if X>(u+m)/2

instead of the procedure (1.2). This new procedure leads to the prob-
ability of misclassification
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kk — 1
%)) P; —<P<-2—(;z.—;tz) / «r) .

This represents the optimal situation in some sense; and both P, and
P¥ are expected to be greater than P;** because of the lack of infor-
mation on g and g, and, perhaps, on o

The problem considered here is the estimation of the conditional
probability, P,. Of the several authors (especially John [4], Okamoto
[6], Hill [3], Geisser [2], Lachenbruch and Mickey [5], and Sorum [9])
who have treated the probability of misclassification problem, the studies
by Lachenbruch and Mickey, and by Sorum are particularly relevant
here. Lachenbruch and Mickey compared several estimators of P, using
a Monte Carlo sampling experiment and obtained fairly conclusive re-
sults. Sorum made an extensive analytical investigation of this problem
for the cases of univariate and multivariate normal distributions with
known variance and known covariance matrix, respectively. She used
the conditional mean square error as the criterion for comparison of
estimators of P,. This criterion failed to afford an adequate discrimi-
nation among estimators. The criterion of unconditional mean square
error used in the present paper both seems a more meaningful measure
of performance and provides clearer discrimination among the estimators,
though there is a slight discrepancy with the findings of Lachenbruch
and Mickey, which may be a peculiar phenomenon in the univariate
case.

In Section 2, the eight estimators to be considered in this paper
are defined. It is useful to divide them into two groups: (1) non-
parametric estimators, and (2) estimators based on the assumption of
normality of II, and II,. The derivation of the unconditional mean
square errors for the estimators in the first group is given in Section 3
and for those in the second group in Section 4. Finally, Section 5 con-
tains comparisons of the unconditional mean square errors of the eight
estimators.

2. Estimators of the probabilities of misclassification

We shall first describe two nonparametric estimators of P;,. The
reclassification estimator, P, suggested by Smith [8] is one of the clas-
sical estimators. To compute P, the discrimination procedure (1.2)
must be formulated from the m, observations from II; and the n, obser-
vations from I7,. Then each of the m, observations from 77, is classified
according to the procedure. The estimator, Py, is the proportion of the
n, observations misclassified by the procedure as belonging to I7;.

The “jackknife” estimator, P,, was proposed by Lachenbruch and
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Mickey [5] as “method U.” To compute the value of Py, it is neces-
sary to make all possible (n,—1, 1) “splits” of the sample from 77,. For
each possible split, a discrimination procedure (1.2) is formulated from
n, and n,—1 observations on 77, and II,, respectively. Then the remain-
ing observation from /I, is classified according to this procedure. The
estimator, P,, is the proportion of the n, observations from 17, which
are misclassified as belonging to I7,.

Next, six estimators of P, which rely on the assumption of normality
of /7, and II, will be defined. A classical estimator is P,, which is ob-
tained by substituting the usual sample estimator into the expression
for P, given by equation (1.4). Hence, if ¢* is known,

q)(_;_@—@) / a) if 3<%,
@.1) Py=
1—¢(%(51—5,)/a> if 5>%,,
if ¢* is unknown
a)(%(il—iz) / s> if %<7,
2.2) P,=
1—¢<—;—(§:,—52)/s> if #>7, .
To define the estimators P& and P#s, the asymptotic expansion of
P;¥ due to Okamoto [6] is used, giving
@8)  Pr=0(L(u—m) /o)~ l(a—plolnit+ni
. ¢(—;—(ﬂx—ﬂz)/¢>+oz
=0 (3 (u—p) /a) 4+ (40 (2 (u—ps) /o) 40,

where ¢ denotes the density function of N(0,1), ¢' its derivative, and
O, denotes the second order terms of n;*, n;* and (n,+n,—2)"!. Although
not really estimators of P;, but rather of P, the estimators P and
P¥s (corresponding to the “O” and “0OS” methods of Lachenbruch and
Mickey) might still be useful and hence are included in this discussion.
Substitution of the usual estimators for g, and g, (and for ¢* when ¢
is unkown) gives P¥. Then when ¢ is known

2.4) r=0 (% (@—7) / o'> +-;—(n;‘+n;‘) w(% (F—7,) / a) ,

and when ¢’ is unknown,
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@5)  Pr=0(1@-%)/s)+= i +n)¢ (L @E—F) /) .

When ¢* is unknown, substitution of an unbiased estimator (n,+n,—4)/
(n,+n,—2)s* for 1/4* into expression (2.3) gives P¥;. Thus,

(26) P#s=0| L @-@)(m+m—4)" /stni+n—2)"]
1 —1 —1\ g7 1 .- = 1/2 12
+§(’nl +n:') ¢ E(xl—xz)(nx'*’nz“"l) s(n,+mn,—2) .
Another estimator for the case when ¢* is unknown is P}¥*. Sub-

stitution of the same unbiased estimator for 1/¢* into expression (1.7)
gives the “DS” method of Lachenbruch and Mickey ;

@.7) Pii=0 [-;- (1— Fy) (g 4+ 1y — A)12 / s(n,+ng——2)‘/’] .

Bayesian arguments suggest the estimators P, and Py constructed
by Geisser [2] and Sorum [9], respectively.

(2.8) P,,=q>%(?a,—5,) /a(l-{—n;‘)‘/’] when o* is known ,

and

2.9) P,=0 %@—5,) s(l+n;‘)"2:| when ¢* is unknown ,

2.10) Py=0|L1@z—z,) / a(1+ln;l)m] when ¢* is known ,
2 2
and

(2.11) Py=9 [%(5:1——52) / 8 <1+%n;‘>m] when ¢* is unknown .

It is noted that since the event Z,>%; has probability of the kth
order with respect to n;' and n;! for any k>0 as =,, n,— oo because
of the assumption g <p,. Therefore the procedure (1.2) and equations
(1.4), (1.5), (2.1) and (2.2) can be rewritten as

(2.12) Classify X as belonging to 7, if X< (%,+%.)/2;
classify X as belonging to I, otherwise,

@18) P=o([+GE+E)—m] /o),

(2.14) P; iPr{X<%(E1+E,)

Xeﬂz} ,
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and

(2.15) P,,iq)(%(i',—iz) / u) when ¢! is known ,

(2.16) P,,i¢>(-;—(51—5:2) / s) when ¢* is unknown .

The estimators in equations (2.15) and (2.16) can also be obtained
by the substitution of the usual sample estimator into equation 1.m.
The expansion (2.3) actually follows easily from (2.14).

3. Mean square errors for nonparametric estimators

The unconditional mean square errors for the estimators P; and P,
are derived below for the case when ¢ is known. We may assume
=1 without losing generality since the classification procedure is in-
variant under any scale transformation.

Both estimators P; and P, can be expressed as

A g
(8.1) Py=n;* P

where

1 when ,; is classified as belonging to 7,

i= .
’ 0 when z,; is classified as belonging to 17,
and x,; is the jth observation in the sample from I7,, for J=1,2,--+, m,.
Then
A iy "
(3.2 E[(P,—Pl=n3* 3} () +2ni* 5 30 B 1)

—2n;* 2 E(1; P)+E(P}) .
To evaluate E(P}), first define & by
3.3) &=%@+&2)—y2 ,

then &, follows a normal distribution with mean (u,—p)/2 and variance
(ni'+n;')/4. From expression (2.13) it follows that
(3.4) P=0(%) .

Expanding each of P, and P; in a Taylor’s series about the point
(1 —)/2 and taking the expectations with respect to &, give
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(3.5) mah@ﬁ§@w+mﬂ@+£§mr+mwa+a,
(B6)  EED=00+ L +ni) 0P+t (nrl +ns YOO+,

where &> =d"[®(t)]"/dt*|,-c,,-ppr for r=1,2; k=0, 2, 4, and 9,=0°, and
where O, denotes the ith order term with respect to »;!, n;!, and (n,+
n,—2)7! for 1=1, 2,3. Equations (1.7), (2.3) and (3.5) show that, to O,,
both P, and P;* are larger than P}** in the sense of expectation.

Useful in evaluating the second term of expression (3.2) is the fol-
lowing lemma, the proof being omitted.

LEMMA. If <Z;)~N((::>, <:; f)), and p 18 close to zero, then

Pr {y:<0, ¥: <0} = O(—u,)P(—v;5) + pd( —v)p( —vy)
2 o= —)+0()

Consider now the estimator P and its mean square error as given
by equation (3.2). Define &; by

3.7) @=%«a+zg—%, for j=1,2,-+, 1,

then the &, follow jointly a normal distribution with mean (y,—)/2 and

variance 14 (n;'—3n;')/4 for each &, and covariance (ni'—3n;')/4 for &,

and &, (j#J). It follows then that
B(1)=B(r)=Pr {¢,>0} = 0 (L k(u—pw))

where

o= [1+%(n;‘—3n;‘)]_m .

Using a binomial expansion of & and a Taylor’s series expansion of
D(k(uy— p12)/2) about the point (x,—p)/2 results in

(3.8) E‘(rf)=d’+%(n;‘—3n;')¢g+02 for any j .

Since <Z§j) is distributed according to N (<282:Z3; 2), (’1) ;’)) with p=

k¥ (n;'—3n;')/4, the lemma stated above applies and
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(3.9) E(1;1/)=Pr {¢,>0, £;>0}
—ot( L _ o 1 _
=0 (':Z—k(#l l‘z)) +p¢ (—k(ﬂl #z))

+-;—p[ ke(e— #z)] ¢2< k(m— Fz))'*‘os

for any j#j'. Using again a binomial expansion of % and Taylor’s
series expansions of @(k(p—)/2) and é(k(p,—p)/2), equation (3.9) can
be rewritten as

(3.10) E(y;1)= ¢2+ (n —3n PP+ —— 28 (' —3n)'dP + 0,

for any j+j'.

Consider next E(7,Py)=E.[E(r,P:|§)]=E[®() Pr{¢,>0[&}]. Since
the conditional distribution of £,|& is normal with mean (g,—p,)/2+
Bl&o— (11— 2)/2] and variance g;=1—mn;'+4(n,+mn,)"!, where g=(n'—mn;')/
(n'+mn;t), it follows that

E(7,P)=E[#(%)]
where
He)=06)0([ L (u—m+8(6— L u—pml) | /) -

Similarly as with (3.5), it holds that

(3.11) E(7;P)= ¢o+—('n1_‘+ 1)¢z+-i2—8—‘(’n 710+ 0,

where ¢, =d*¢(t)/dt*|.—c,,-,pr for k=0,2,4. Alternatively, after some
calculation, E(7,P;) can be written as

3.12) E(T,Pz)=¢g’)+-;-(n —ny 1)d)<”+—1-2§(n —2n7 'yt 4 5nt)oP

~Lusgp+o,
where ¢ =d*[¢(t)]"/dt*|.-c,,—upn for r=1,2 and k=0, 2. By substituting

expressions (3.6), (3.8), (8.10) and (3.12) into equation (3.2), or, equiva-
lently, into

(3.13) E[(P,—Py]=E(P)+n;*E(1})+(1—n:)E(y;1,)—2E(1,Py)

the unconditional mean square error for P, is obtained, as
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(3.14) E[(Pz—Py)] =nz"¢(1—¢)+%nz‘l(nfl—3nz‘l) (9, — D)
+ '1— n2—2¢gz) +0, .

For the estimator P, the results corresponding to (3.8), (3.10) and
(3.12) are respectively

(3.15) E(rf)=@+—;~(nf‘+n{‘)¢z+02,

(3.16) E(r,r,,)=¢2+%(n;‘+n;‘)a)§”—n;‘¢z+%(n;‘—l—n;‘)zq)ﬁz)

— L )P+ 000,360 +0,  for g,
and
(B17) E(pP)=0 4 (i +ns) 00— Lniigi L it +ngtyop
- 1—16 ()~ 5P+ %— n; (PP, + ¢ — 1) 10, .

Substitution of these three equations together with (3.6) into (3.13)
yields

(3.18) E[(Pv—Pz)ZJ=n;*a>(1—¢)+%n;l<n;1+n;')<a>z—¢9>)

+%’N«z—2¢f+03 .

4. Mean square errors for estimators requiring normality assump-
tions

4.1. Case when o* 18 known

As in the preceding section, it is assumed that ¢*=1. Letting
(4.1) zl=_(i;l—‘ul and Zz—_—'fg—[lz N

z; and 2, are independent normal random variables each with mean zero
and with variances ;! and n;!, respectively. Denote by £ and » the
quantities

(4.2) c=%(z1+z2) and n=%(zl—z2) .
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Then P; in equation (2.13) can be rewritten
4.3) P=0(2(u—m)+2) -

Expanding this in a Taylor’s series about the value {=0 gives

(4.4) PF¢o+c¢1+%cz¢z+%c¢,+%c@, .

Consider first the estimator P,, which can be written from (2.15) as
(4.5) 7 PD=¢<'%'(#1_#2)+0> .
Expanding P, in a Taylor’s series about the value »=0 gives an expan-
sion analogous to the expression (4.4) but with { replaced by 7. The
difference of these two expressions is

(4.6) PD—Pzi(n—m+%(n’—c2)¢z+%(vﬂ—c*)¢a .

Squaring this expression and taking the expectation with respect to ¢
and 7 give

(4-7) E[(PD - P2)2] = nx_1¢3+% [('nl’”/z)ml +nz_z]¢1¢a + % (nlnz)-l¢;‘* (0

Consider next the estimators P; and P;. Each is a special case of
the estimator P, defined by

4.8) Po=0(| 3 (u—pm)+7]A+ansy )

where a takes on the value 1 for P, and the value 1/2 for Py;. Re-
taining only terms of relevant order, equation (4.8) is expanded as

(4.9) P=0 % (t—p)+ 7}> —%an;‘[é (m—ﬂz)+77] ¢ (% (ﬂl—ﬂz)+v)

=P, +—1—a"z_1¢'<l(ll1”l~lz)+7}>
2 2
=P, +%—an;l(¢z+ﬂ¢a)

and henc'e

A

(4.10) Pz—Pz=(PD—P2)+%an{‘(@z+7/¢a)
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Squaring this expression and taking the expectation yield
(4.11) E[(P,— P)|=E[(Po— P,)]+an;'E(Pp— Py) (®,+1®;)

+ (% a'nz-l¢2>2+03 .

If we denote by E the difference of the mean square errors of P, and
P,, or

(4.12) E=E[(P,—P)]-E[(P,— Py,
then from (4.6) and (4.11) it follows that
(4.13) E=%n;’(a’¢§+2a¢l¢s)+os :

Substitution of a=1 and a=1/2 gives respectively

(4.14) E;=E[(P;—P)]1—E[(Pp—P)l]= -‘li—n; Y93+29,9,)+0, ,

(4.15) Es=E[<Ps—Pm—E[(PD—Pz)zl=%n;*(¢:+4¢1¢s>+o,.

The mean square errors of P; and Py can be found from these two
equations and (4.7).

Finally, consider the estimator Pg&. Since equation (2.4) can be
written

(16)  Ps=0(L(u—pm)+n)+5 (0 +0i) (- (u—p) +7)
=Pyt (a0
expression (4.9) can again be used with an;' replaced by (ni'+mn:;')/4.
Thus from (4.13) it follows that
(4.17) E¥=E[(P§—P)]—E[(P,—P)]
= o4O Lm0+ 1 )0.0,+O

4.2. Case when o 13 unknown

Even if ¢* is unknown, the assumption that ¢ =1 implies no loss of
generality. Note that the expression (4.3) for P; is still available here.
The estimators P,, P;, Py and P}¥ can all be written in the general form

(4.18) Pi=0([ L (n—p)+r |0+ A+



430 N. SEDRANSK AND MASASHI OKAMOTO

where 7=(2,—2,)/2, t=8"—1, and a takes on the values 0, n;!, n;'/2 and
2(ni+n,—4)"! for P,, Py, Py and P}¥, respectively.

Consider first the simplest case, that of P,. Equation (4.18) (with
a=0) can be expanded in a bivariate Taylor’s series about the point
(7, 7)=(0, 0) as

4.19) PD=¢+<n¢m+r¢m>+-12—(n’¢m+2m¢u+r=¢oz)
+ % (7]8@’.0 + 3721@21 + 3’772¢1z + T’@ls) ’

where @, =3""'®(tu"?)/ot*0u’ |-y -pp/ru-1 for k,1=0,1,2,3 and, in parti-
cular, 9,,=@, in the notation used thus far. Taking the difference be-
tween (4.19) and (4.4), we have

(420)  Po— P=(— 00+t + [0~ C)0st 2750 +00]
+ % [(7* =)Dy + 39' Py + 377* D1+ °Dys] .

Squaring equation (4.20), taking the expectation with respect to £, » and
7, and using

(4.21) E(r)=0, E()=2f", E()=8f",
E()=12f"+48f, f=m+mn,—2,

give the following expression for the mean square error of P,:
(4.22) E[(Pp— P)'1=n;'0}+2(n,+n,—2)"'®;,
+-i—(nlnz)"@;-{—(bld),)+4n;’q),¢a

+%(n;l+n;') (g + 13— 2) (P + Do Pyy)

+ny'(n+n,—2)7'0,0;,
+ (M 41— 2) (8P Pye +3D7, + 4D Diy) + O .

To deal with the estimators P;, Py and Pj¥, it is useful to rewrite
(4.18) as

1

(4.23) 152=P,,+3a

([ 5 n—rd+2]40)
SR T

analogously to (4.9). Hence it follows that
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(4.24) E=E[(P,—Py]—E[(Po—P)]
=3 @O L ans 00+ T ol A m—2) 00— (1 — )1
a result corresponding to (4.13) in the case when ¢* is known. Substi-

tuting a=n;"', n;'/2 and 2(n,+n,—4)" into equation (4.24) yields, respec-
tively,

(4.25) Ea=i—n;’(¢§+2¢1¢3)+%n;‘(nl+n2——2)“d>,[¢4——(,ul—y,)¢,]+03,
(4.26) Es=%nz—z(@'l‘4¢1¢s)+%’n?l(nn+’nz—2)"l¢z[¢4—(#r‘."z)djs]+Oa,

(4.27)  EFF=(n+n,—4)""0}+n:'(n+n,—4)"'0,0,
+ ';— (ny+n,—4)(n,+n,—2)"'0,[0,— (11— 1) @3] 4-0O; .

Finally, the estimators P} and P}¥ are generalized to
(4.28) 1‘)*—@([1( — )+ |[[(1+2) (1 +a)]
. =0\ gl +7|{[1+7)(1+a)]
1 e[l 1 1 -12
+2 i neg (| 2=+ [+ A+l )

which is reduced to P§ when a=0 and to P}; when a=2(n,+n,—4).
Use of the same method as used to obtain expression (4.23) yields

(4.29) R*=PD+%[a+%(n;*+n;l)]¢'([%(m—yz)+n](1+r)-m)',

which is identical to the result obtained by replacing a in equation
(4.23) by a+(n;'+n:')/4. Consequently

(4.30) o =E[(P§—P)1—-E[(P,—P)],
and
(4.31) Egs=E[(Pss— P)'1— E[(Pp,— Py)’]

are obtained by substituting

aw=%(n:'+n;‘) and aos=%(nfl+n;l)+2('n1+”2—4)_l

respectively into equation (4.24).
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5. Comparison of the mean square errors for the various estimators

5.1. Py versus Py
Taking the difference between (3.14) and (3.18) gives, up to Oy,
(5.1)  E[(Pz—P)]-El[(Pyr—P)1= -3— 13 [2(P5P — Py) + 50— 1]

Substitution of
= =¢'(¥)=—y(¥) ,

(5.2) O =(0'(y))" =2¢'(y) —2yp(¥)P(¥) »
#°=(#'¥)) =14y —2)¢'(¥) ,

where y={(u,—p1;)/20<0, into the expression in the brackets of (5.1) gives

yoW9W) »
where ¢ stands for the density of N(0,1) and
(5.3) 9(y)=2—40(y)+@By+2y™")(y) .

Since g(—o0)=2, g(—0)=—oco, and
o' ()= —By*+3+2y () <0 ,
there exists a unique value ¢>0 satisfying g(—c)=0, so that
gy)>0&= y<—c.
Hence
(5.4) E[(Pr—P)1>E[(Py— P)’] <= (0<)1— 1 <20 .
The value of ¢ is approximately 0.930.

5.2. Case when & is known

First, consider (P or P,) versus (P,, Ps;, Ps or P¥). As is readily
seen from equations (3.14), (3.18), (4.7), (4.14), (4.15) and (4.17), esti-
mators in each group are equivalent as far as the linear terms are con-
cerned. However, the difference between the linear terms for the two
groups is

(5.5) - n'[e(l—9)—2],

which is easily seen to be always positive. Thus the second group may
be said to be better than the first when n, and n, are sufficiently large.
Next, consider the members of the second group compared each
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with the other. Using (5.2) and @,=¢"(y)=(¥*—1)¢(y), it follows, up to
03, that

Ea=i—n;2(3y2—2)¢'(w

(5.6)

Es= 116 i Gyt — 4§ W) .
and hence
(5.7) E,—Es= 116 n Tyt — ) F(y) -

It follows from (5.6) and (5.7) that among P,, P, and P;
P, is best when #*<4/7,

(5.8) Py is best when 4/7<y*<4/5,
P, is best when 4/5<%*.

Comparison of P¥ with the other three depends on the ratio n,/n,. If
m,=mn, in particular, then

E =Tlgn;*(¢§+4@.¢a)=Es ,

which means that PX is equivalent to Py in the sense of the mean
square error.

5.3. Case when ¢ is unknown

To evaluate (P or Py) relative to (P, P;, Ps, P3¥, Py or Pgs),
consider the mean square errors for these estimators as given in Sec-
tions 8 and 4.2. Recall that within each group the first order terms
are common. Let A(y) denote the difference of the linear terms of the
mean square errors between the two groups. Then,

(5.9) h(y)=n;"[O(1—@)— B —2(n;+n,—2)7'®;, .

Using @y =0,/2=—y¢(y)/2, the derivative of the function h(y) is writ-
ten as

(5.10) R'(y) = {n:'[1—20(y)+2yp(¥)] — (i +7.—2) (¥ — "))} $(¥)
and is reexpressed as k(y)¢(y). Since
K (y)= —[2n:'y*+ (n+n,—2)" 1 — 4" +4/)16(y)

is nonpositive for m,=2, and since k(0)=0 and k(—oo):O, the mean
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square error for the second group is smaller than that for the first
when n,=>2.

To make comparisons among the second group, it is assumed, for
simplicity, that »,=m,. As was seen in Section 4.2, all the estimators

in this group can be represented by 132 in equation (4.18), where «a takes
on the values

0, i, %n 2mtm—4)", L ar),

—(’n i)+ 2(n+n,—4)71,

respectively. When n,=u, these values become, up to O,

0, =, —;—n;‘, n:t, %n;‘, %’n{‘,

Thus P§¥ and Py are equivalent to P, and Pg, respectively, so com-
parisons need be made only among P,, P;, Py and P};. From (4.25),
(4.26) and (4.31) it follows that, up to O,,

E'a——nz 'Sy +y' — () ,
(5.11) Es =——n, '3y — ') ,

Efs=ns'Gu'+20'~ 96')

Hence, among the estimators belonging to the second group,
Pgs is best when y'<2/3 ,
P, and Pj¥ are best when 2/3<y*<(v¥13—1)/3,
Py and Pg are best when (v13—1)/3<y¢'<2/V3 ,
P, is best when 2/v/3 <y*.

(5.12)

The conclusion is somewhat inconsistent with the results of Lachenbruch
and Mickey [5] who showed experimentally the superiority of the esti-
mator Pgs in the multivariate normal case.

IOWA STATE UNIVERSITY AND UNIVERSITY OF WISCONSIN
OSAKA UNIVERSITY
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