NOTE ON THE ESTIMATION OF CORRELOGRAM BY USING TRANSFORMED VARIABLES

MITUAKI HUZII

(Received June 29, 1970; revised June 23, 1971)

1. Introduction

Let X(n), $n=0, \pm 1, \pm 2, \cdots$, be a real-valued stationary Gaussian process with discrete time parameter and

$$EX(n) = 0$$

$$EX(n)^{2} = \sigma^{2}$$

$$EX(n)X(n+h) = \sigma^{2}\rho_{h}.$$

We assume σ^2 is known and ρ_h is unknown. In this paper, we shall discuss the estimation of ρ_h . Let us assume that the process X(n) is observed at $n=1, 2, \cdots, N, \cdots, N+h$. In the previous papers ([2], [3]), we have discussed, mainly, the estimates

$$\tilde{\gamma}_h = \frac{1}{N} \frac{1}{\sigma^2} \sum_{n=1}^N X(n) X(n+h)$$

and

$$\gamma_h = \sqrt{\frac{\pi}{2}} \frac{1}{N} \frac{1}{\sigma} \sum_{n=1}^{N} X(n) \operatorname{sgn} (X(n+h))$$

where

$$\operatorname{sgn}(x) = \begin{cases} 1; & x > 0 \\ 0; & x = 0 \\ -1; & x < 0. \end{cases}$$

In the following, we consider a generalization of estimates γ_h and $\tilde{\gamma}_h$. This generalized estimate is

$$R_G(h) = \frac{1}{\alpha} \cdot \frac{1}{N} \sum_{n=1}^{N} X(n)G(X(n+h))$$
,

where G(x) is a measurable function of x satisfying some conditions and

 α is a constant being independent of ρ_h . We can determine α such that $R_G(h)$ is an unbiased estimate of ρ_h . In this paper, we shall evaluate the variance of $R_G(h)$ for h>2M, where M is a positive integer such that $|\rho_k|<\varepsilon$ holds for a given positive number ε when k>M. In this case, we can easily see that

$$\operatorname{Var}(R_{G}(h)) = \frac{1}{\alpha^{2}} \frac{\sigma^{2}}{N} \left\{ EG(X(0))^{2} + 2 \sum_{k=1}^{\infty} \rho_{k} EG(X(0)) G(X(k)) \right\} + O(\varepsilon) .$$

But in this paper, we give a more precise evaluation of $Var(R_a(h))$. Using this result, we can show, asymptotically, that

$$\operatorname{Var}\left(R_{G}(h)\right) \geq \operatorname{Var}\left(\tilde{\gamma}_{h}\right)$$

for $h \ge 2M$. Related discussions are found in Rodemich [7] and Brillinger [1].

2. Unbiased estimates of ρ_h and their asymptotic variances

Let G(x) be a real valued measurable function of x such that

$$(G, 1)$$
 $G(-x) = -G(x)$

$$(G, 2) \qquad \int_{-\infty}^{\infty} G(x)^4 \varphi(x; \sigma) dx < +\infty ,$$

and

$$(G, 3) \qquad \int_{-\infty}^{\infty} xG(x)\varphi(x; \sigma)dx \neq 0 ,$$

where

$$\varphi(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x^2/2\sigma^2)}.$$

We shall define the process Y(n) such as

$$Y(n) = G(X(n))$$
.

Then Y(n) is a strictly stationary process with $EY(n)^2 < +\infty$. Let us construct the statistic

$$R_G(h) = \frac{1}{\alpha} \frac{1}{N} \sum_{n=1}^{N} X(n)G(X(n+h))$$
,

where

$$\alpha = \int_{-\infty}^{\infty} xG(x)\varphi(x;\sigma)dx.$$

It can be seen that $R_{\sigma}(h)$ is an unbiased estimate of ρ_h and the variance of $R_{\sigma}(h)$ is given as follows:

$$\begin{aligned} \operatorname{Var}\left(R_{G}(h)\right) &= \frac{1}{\alpha^{2}} \frac{1}{N} EX(0)^{2} G(X(h))^{2} \\ &+ 2 \frac{1}{\alpha^{2}} \frac{1}{N^{2}} \sum_{k=1}^{N-1} (N-k) EX(0) X(k) G(X(h)) G(X(k+h)) - \rho_{h}^{2} . \end{aligned}$$

Hereafter we shall treat the processes which satisfy the following condition:

$$(P,1)$$
 $\sum_{l=-\infty}^{\infty} |\rho_l| < +\infty$,

(P, 2) for any distinct parameter values k, l, m, n, the joint distributions of (X(k), X(l), X(m), X(n)) is non degenerate.

From the condition (P, 1), it follows

(2.1) for any $\varepsilon > 0$ there exists a positive integer M such that $|\rho_l| < \varepsilon$ holds for l > M.

We discuss the estimation of ρ_h for h>2M, where M is defined as above. In this section, we shall show the following result.

THEOREM 1. Let X(n) and G(x) satisfy the above stated conditions. Then we have, asymptotically,

$$\operatorname{Var}(R_{G}(h)) = \frac{1}{\alpha^{2}} \frac{\sigma^{2}}{N} \left\{ EG(X(0))^{2} + 2 \sum_{k=1}^{\infty} \rho_{k} EG(X(0))G(X(k)) + C_{\varepsilon,N} \right\} + O\left(\frac{1}{N^{2}}\right),$$

where $C_{\varepsilon,N}$ is a constant satisfying the following conditions;

- (a) there exists a constant C_{ε} such that $|C_{\varepsilon,N}| < C_{\varepsilon}$,
- (b) C_{ε} does not depend on N,
- (c) C_{ε} tends to zero as $\varepsilon \rightarrow 0$.

In order to prove this theorem, we modify the expression of $Var(R_o(h))$ as follows;

$$\operatorname{Var}(R_{G}(h)) = \frac{1}{\alpha^{2}} \frac{1}{N} EX(0)^{2} G(X(h))^{2} + V_{1} + V_{2} - \rho_{h}^{2},$$

where

$$V_1 = 2\frac{1}{\alpha^2} \frac{1}{N^2} \sum_{k=1}^{M} (N-k) EX(0) X(k) G(X(h)) G(X(k+h))$$

and

$$V_2 = 2 \frac{1}{\alpha^2} \frac{1}{N^2} \sum_{k=M+1}^{N-1} (N-k) EX(0) X(k) G(X(h)) G(X(k+h))$$
.

And we shall show that $EX(0)^2G(X(h))^2/(\alpha^2N)$, V_1 and V_2 are expressed as

$$\begin{split} &\frac{1}{\alpha^2}\frac{\sigma^2}{N}EG(X(0))^2 + \frac{A_\varepsilon^0}{N} \ , \\ &2\frac{1}{\alpha^2}\frac{\sigma^2}{N}\sum_{k=1}^\infty \rho_k EG(X(0))G(X(k)) + \frac{A_\varepsilon^1}{N} + O\Big(\frac{1}{N^2}\Big) \end{split}$$

and

$$\rho_h^2 + \frac{B_{\varepsilon,N}}{N}$$

respectively, where A_{ε}^0 and A_{ε}^1 are constants tending to zero as $\varepsilon \to 0$ and $B_{\varepsilon,N}$ is a constant having the same meaning as $C_{\varepsilon,N}$ in Theorem 1. These facts are obtained from the following Lemmas.

LEMMA 1. For any k, $0 \le k \le M$, it holds

$$EX(0)X(k)G(X(h))G(X(k+h)) = EX(0)X(k)EG(X(0))G(X(k)) + O(\varepsilon).$$

In fact, EX(0)X(k)G(X(h))G(X(k+h)) can be regard as a function of ρ_k , ρ_h , ρ_{h-k} and ρ_{k+h} . $|\rho_k|$ might be large, but ρ_h , ρ_{h-k} and ρ_{k+h} are less than ε . Accordingly we notice ρ_h , ρ_{h-k} and ρ_{k+h} and put

$$F_1(\rho_h, \rho_{k+h}, \rho_{h-k}) = EX(0)X(k)G(X(h))G(X(k+h))$$
.

 $F_1(\rho_h, \rho_{k+h}, \rho_{h-k})$ is a differentiable function of ρ_h , ρ_{k+h} and ρ_{h-k} . So we have the above result.

Using Lemma 1, we can easily obtain

$$\frac{1}{\alpha^2} \frac{1}{N} EX(0)^2 G(X(h))^2 = \frac{1}{\alpha^2} \frac{\sigma^2}{N} EG(X(0))^2 + \frac{A_{\varepsilon}^0}{N}$$

and

$$V_1 = 2\frac{1}{\alpha^2} \frac{\sigma^2}{N} \sum_{k=1}^{M} \rho_k EG(X(0))G(X(k)) + \frac{A_{\varepsilon}^2}{N} + O\left(\frac{1}{N^2}\right)$$
,

where A_{ε}^{0} is a constant as stated in the above and A_{ε}^{2} is a constant having the same meaning as A_{ε}^{0} . Now

$$\begin{split} \sum_{k=1}^{M} \rho_{k} EG(X(0)) G(X(k)) &= \sum_{k=1}^{\infty} \rho_{k} EG(X(0)) G(X(k)) \\ &- \sum_{k=M+1}^{\infty} \rho_{k} EG(X(0)) G(X(k)) \ . \end{split}$$

For k>M, putting $W(\rho_k)=EG(X(0))G(X(k))$, we have

$$W(\rho_k) = W(0) + \rho_k W'(\rho) \mid_{\rho = \theta_1 \rho_k}$$
,

where $0 < \theta_1 < 1$. It holds

$$W(0) = 0$$
 and $|W'(\rho)|_{\rho = \theta_1 \rho_1} | < W$,

where W is a constant independent of k. Therefore

$$\left|\sum_{k=M+1}^{\infty} \rho_k EG(X(0))G(X(k))\right| \leq \sum_{k=M+1}^{\infty} \rho_k^2 W < \varepsilon W \sum_{k=-\infty}^{\infty} |\rho_k|.$$

Combining these results, we get

$$V_1 = 2 \frac{1}{\alpha^2} \frac{\sigma^2}{N} \sum_{k=1}^{\infty} \rho_k EG(X(0)) G(X(k)) + \frac{A_{\varepsilon}^1}{N} + O\left(\frac{1}{N^2}\right)$$
,

where A_{ε}^{1} is a constant as stated in the above.

LEMMA 2. If k>M, we have

$$EX(0)X(k)G(X(h))G(X(k+h)) = \alpha^2 \rho_h^2 + F(\rho_h, \rho_k, \rho_{k+h}, \rho_{k-h})$$

where $F(\rho_h, \rho_k, \rho_{k+h}, \rho_{k-h})$ is a function of ρ_h , ρ_k , ρ_{k+h} and ρ_{k-h} and satisfies the following conditions:

(a) there exists a constant F_{ε} such that

$$\sum\limits_{k=\mathit{M}+1}^{N-1} |F(
ho_{\mathit{h}},\,
ho_{\mathit{k}},\,
ho_{\mathit{k}+\mathit{h}},\,
ho_{\mathit{k}-\mathit{h}})|\!<\!F_{arepsilon}$$
 ,

- (b) F_{ε} is independent of N,
- (c) F_{ε} tends to zero as $\varepsilon \rightarrow 0$.

Lemma 2 is shown as follows. If we put

$$X(l) = \rho_h X(l+h) + \xi(l) ,$$

 $\xi(l)$ and X(l+h) are mutually independent. We have

$$\begin{split} EX(0)X(k)G(X(h))G(X(k+h)) \\ &= E\{\rho_h X(h) + \xi(0)\} \{\rho_h X(k+h) + \xi(k)\} G(X(h))G(X(k+h)) \\ &= \rho_h^2 EX(h)X(k+h)G(X(h))G(X(k+h)) \\ &+ \rho_h EX(h)\xi(k)G(X(h))G(X(k+h)) \\ &+ \rho_h E\xi(0)X(k+h)G(X(h))G(X(k+h)) \\ &+ E\xi(0)\xi(k)G(X(h))G(X(k+h)) \; . \end{split}$$

It holds

$$EX(h)X(k+h)G(X(h))G(X(k+h)) = EX(0)X(k)G(X(0))G(X(k))$$
.

And this is a function of ρ_k . So we put

$$F_2(\rho_k) = EX(0)X(k)G(X(0))G(X(k))$$
.

Then we have

$$F_2(\rho_k) = F_2(0) + \rho_k F_2'(\theta_2 \rho_k)$$
,

where $0 < \theta_2 < 1$ and

$$F_2'(\theta_2
ho_k) = \left[\frac{d}{dx} F_2(x) \right] \Big|_{x=\theta_2
ho_k}$$

We can see that $F_2(0) = \alpha^2$ and $|F_2'(\theta_2 \rho_k)| < C_2$ holds for $|\rho_k| < \varepsilon$, where C_2 is a constant being independent of k.

In the next place, we consider $EX(h)\xi(k)G(X(h))G(X(k+h))$. It holds

$$EX(h)^2 = EX(k+h)^2 = \sigma^2$$
,
 $E\xi(k)^2 = \sigma^2(1-\rho_h^2)$,
 $EX(h)\xi(k) = \sigma^2(\rho_{k-h} - \rho_h\rho_k)$,
 $EX(h)X(k+h) = \sigma^2\rho_k$,
 $E\xi(k)X(k+h) = 0$.

So $EX(h)\xi(k)G(X(h))G(X(k+h))$ is a function of σ^2 , ρ_h , ρ_k and ρ_{k-h} . But we are now paying attention to the small value of correlation and the showing that

$$\sum_{k=M+1}^{N-1} EX(h)\xi(k)G(X(h))G(X(k+h))$$

is bounded, independently of N. Therefore we consider $EX(h)\xi(k)\cdot G(X(h))G(X(k+h))$ is a function of ρ_k only and we put

$$F_3(\rho_k) = EX(h)\xi(k)G(X(h))G(X(k+h))$$
.

It holds

$$F_3(
ho_k)\!=\!F_3(0)\!+\!
ho_kF_3'(
ho)\mid_{
ho= heta_3
ho_k}$$
 ,

where $0 < \theta_3 < 1$. We have $F_3(0) = 0$ and $|F_3'(\theta_3 \rho_k)| < C_3$ for $|\rho_k| < \varepsilon$, where C_3 is a constant being independent of k. Similarly putting

$$F_4(\rho_k, \, \rho_{k+h}) = E\xi(0)X(k+h)G(X(h))G(X(k+h))$$
 ,

we have

$$F_{4}(\rho_{k}, \rho_{k+h}) = F_{4}(0, 0) + \rho_{k}F_{4}^{(1)}(\theta_{4}\rho_{k}, \theta_{4}\rho_{k+h}) + \rho_{k+h}F_{4}^{(2)}(\theta_{4}\rho_{k}, \theta_{4}\rho_{k+h}),$$

where

$$\begin{split} & F_4^{(1)}(\theta_4\rho_k,\,\theta_4\rho_{k+h}) \!=\! \left[\!\!\begin{array}{c} \frac{\partial}{\partial x} F_4(x,\,y) \end{array}\!\!\right] \bigg|_{(x,y) = (\theta_4\rho_k,\,\theta_4\rho_{k+h})} \,, \\ & F_4^{(2)}(\theta_4\rho_k,\,\theta_4\rho_{k+h}) \!=\! \left[\!\!\begin{array}{c} \frac{\partial}{\partial y} F_4(x,\,y) \end{array}\!\!\right] \bigg|_{(x,y) = (\theta_4\rho_k,\,\theta_4\rho_{k+h})} \,, \end{split}$$

and

$$0 < \theta_{4} < 1$$
.

In the above expression, we have

$$F_4(0,0)=0$$

and

$$|F_4^{(1)}(\theta_4\rho_k, \theta_4\rho_{k+h})| < C_4^{(1)}, \qquad |F_4^{(2)}(\theta_4\rho_k, \theta_4\rho_{k+h})| < C_4^{(2)}$$

for $|\rho_k| < \varepsilon$ and $|\rho_{k+h}| < \varepsilon$, where $C_4^{(1)}$ and $C_4^{(2)}$ are constants and independent of k.

Finally we consider $E\xi(0)\xi(k)G(X(h))G(X(k+h))$. Joint distribution of $(\xi(0), \xi(k), X(h), X(k+h))$ is a 4-dimensional Gaussian distribution with zero mean and covariances

$$\begin{split} &E\xi(0)\xi(k) = \sigma^2(\rho_k - \rho_h \rho_{k-h} - \rho_h \rho_{k+h} + \rho_h^2 \rho_k) \\ &E\xi(0)X(h) = 0 \\ &E\xi(0)X(k+h) = \sigma^2(\rho_{k+h} - \rho_h \rho_k) \\ &E\xi(k)X(h) = \sigma^2(\rho_{k-h} - \rho_h \rho_k) \\ &E\xi(k)X(k+h) = 0 \\ &EX(h)X(k+h) = \sigma^2 \rho_k \ . \end{split}$$

For simplicity, we put

$$E\xi(0)\xi(k) = \sigma^2 \rho^{(1)}$$

 $E\xi(0)X(k+h) = \sigma^2 \rho^{(2)}$
 $E\xi(k)X(h) = \sigma^2 \rho^{(3)}$.

Then we can express

$$\begin{split} F_{5}(\rho^{(1)}, \, \rho^{(2)}, \, \rho_{k}) &= E\xi(0)\xi(k)G(X(h))G(X(k+h)) \\ &= F_{5}(0, \, 0, \, 0) + \rho^{(1)} \frac{\partial F_{5}}{\partial \rho^{(1)}} \Big|_{(0, 0, 0)} + \rho^{(2)} \frac{\partial F_{5}}{\partial \rho^{(2)}} \Big|_{(0, 0, 0)} \end{split}$$

$$\begin{split} &+\left.\rho_{\scriptscriptstyle k}\frac{\partial F_{\scriptscriptstyle 5}}{\partial \rho_{\scriptscriptstyle k}}\right|_{\scriptscriptstyle (0,0,0)} + \frac{1}{2}\left\{(\rho^{\scriptscriptstyle (1)})^2\frac{\partial^2 F_{\scriptscriptstyle 5}}{\partial (\rho^{\scriptscriptstyle (1)})^2}\right|_{\scriptscriptstyle \theta} + (\rho^{\scriptscriptstyle (2)})^2\frac{\partial^2 F_{\scriptscriptstyle 5}}{\partial (\rho^{\scriptscriptstyle (2)})^2}\bigg|_{\scriptscriptstyle \theta} \\ &+\left.\rho_{\scriptscriptstyle k}^2\frac{\partial^2 F_{\scriptscriptstyle 5}}{\partial \rho_{\scriptscriptstyle k}^2}\right|_{\scriptscriptstyle \theta} + 2\rho^{\scriptscriptstyle (1)}\rho^{\scriptscriptstyle (2)}\frac{\partial^2 F_{\scriptscriptstyle 5}}{\partial \rho^{\scriptscriptstyle (1)}\partial \rho^{\scriptscriptstyle (2)}}\bigg|_{\scriptscriptstyle \theta} + 2\rho^{\scriptscriptstyle (1)}\rho_{\scriptscriptstyle k}\frac{\partial^2 F_{\scriptscriptstyle 5}}{\partial \rho^{\scriptscriptstyle (1)}\partial \rho_{\scriptscriptstyle k}}\bigg|_{\scriptscriptstyle \theta} \\ &+2\rho^{\scriptscriptstyle (2)}\rho_{\scriptscriptstyle k}\frac{\partial^2 F_{\scriptscriptstyle 5}}{\partial \rho^{\scriptscriptstyle (2)}\partial \rho_{\scriptscriptstyle k}}\bigg|_{\scriptscriptstyle \theta}\right\}\;, \end{split}$$

where $\theta = (\theta_5 \rho^{(1)}, \theta_5 \rho^{(2)}, \theta_5 \rho_k)$ and $0 < \theta_5 < 1$. In the above expression, we have

$$F_5(0,0,0)=0$$
.

When $\rho^{(1)} = \rho^{(2)} = \rho_k = 0$, it holds

$$\begin{split} E\xi(0)^2\xi(k)^2G(X(h))G(X(k+h)) \\ &= E\xi(0)^2\xi(k)X(h)G(X(h))G(X(k+h)) \\ &= E\xi(0)\xi(k)^2X(h)G(X(h))G(X(k+h)) \\ &= E\xi(0)\xi(k)^2G(X(h))X(k+h)G(X(k+h)) \\ &= E\xi(0)\xi(k)X(h)G(X(h))X(k+h)G(X(k+h)) \\ &= 0 \end{split}$$

and

$$E\xi(0)^2\xi(k)G(X(h))X(k+h)G(X(k+h)) = A(k)(\rho_{k-h} - \rho_h\rho_k)$$

where $|A(k)| < A_0$ and A_0 is a constant being independent of k. Therefore we can express

$$\begin{split} & \frac{\partial F_{5}}{\partial \rho^{(1)}} \Big|_{(0,0,0)} = A_{1}(k) (\rho_{k-h} - \rho_{h} \rho_{k}) \\ & \frac{\partial F_{5}}{\partial \rho^{(2)}} \Big|_{(0,0,0)} = A_{2}(k) (\rho_{k-h} - \rho_{h} \rho_{k}) \\ & \frac{\partial F_{5}}{\partial \rho_{k}} \Big|_{(0,0,0)} = A_{3}(k) (\rho_{k-h} - \rho_{h} \rho_{k}) \end{split}$$

where $|A_i(k)| < A$ and A is a constant being independent of k. And furthermore, the absolute values of

$$B_{1}(k) = \frac{1}{2} \frac{\partial^{2} F_{5}}{\partial (\rho^{(1)})^{2}} \Big|_{\theta}, B_{2}(k) = \frac{1}{2} \frac{\partial^{2} F_{5}}{\partial (\rho^{(2)})^{2}} \Big|_{\theta}, \cdots, B_{6}(k) = \frac{1}{2} \frac{\partial^{2} F_{5}}{\partial \rho^{(2)} \partial \rho_{b}} \Big|_{\theta}$$

are all less than a constant B, which is independent of k. We shall arrange the above results:

$$EX(0)X(k)G(X(h))G(X(k+h))$$

$$=\alpha^2\rho_h^2 + \rho_h^2\rho_k F_2'(\theta_2\rho_k) + \rho_h\rho_k F_3'(\theta_3\rho_k)$$

$$\begin{split} &+\rho_{h}\{\rho_{k}F_{4}^{(1)}(\theta_{4}\rho_{k},\,\theta_{4}\rho_{k+h})+\rho_{k+h}F_{4}^{(2)}(\theta_{4}\rho_{k},\,\theta_{4}\rho_{k+h})\}\\ &+(\rho_{k-h}-\rho_{k}\rho_{h})\{\rho^{(1)}A_{1}(k)+\rho^{(2)}A_{2}(k)+\rho_{k}A_{3}(k)\}\\ &+(\rho^{(1)})^{2}B_{1}(k)+(\rho^{(2)})^{2}B_{2}(k)+\rho_{k}^{2}B_{3}(k)\\ &+\rho^{(1)}\rho^{(2)}B_{4}(k)+\rho^{(1)}\rho_{k}B_{5}(k)+\rho^{(2)}\rho_{k}B_{6}(k)\\ &=\alpha^{2}\rho_{h}^{2}+F(\rho_{h},\,\rho_{k},\,\rho_{k+h},\,\rho_{k-h})\;. \end{split}$$

From the above result and the properties (P, 1) and (2, 1), we get the assertion of Lemma 2.

Using Lemma 2, we can easily obtain

$$V_2 = \rho_h^2 + B_{\epsilon,N}/N$$
,

where $B_{\varepsilon,N}$ is a constant having the same meaning as $C_{\varepsilon,N}$ in Theorem 1. Combining the above results and putting $C_{\varepsilon,N} = (A_{\varepsilon}^0 + A_{\varepsilon}^1 + B_{\varepsilon,N})\alpha^2/\sigma^2$, we get Theorem 1.

3. A minimum variance estimate

In this section, we ignore the terms $C_{\varepsilon,N}/N$ and $O(1/N^2)$ in the expression of $Var(R_G(h))$ in Theorem 1 and consider the main part

$$\operatorname{Var}_{N}(R_{G}(h)) = \frac{1}{\alpha^{2}} \frac{\sigma^{2}}{N} \left\{ EG(X(0))^{2} + 2 \sum_{k=1}^{\infty} \rho_{k} EG(X(0)) G(X(k)) \right\} .$$

Now we shall prove the following theorem.

THEOREM 2. Let X(n) and G(x) satisfy (P, 1) and (P, 2) and (G, 1), (G, 2) and (G, 3), respectively. Then we have, asymptotically,

$$\operatorname{Var}_{N}(R_{G}(h)) \geq \operatorname{Var}_{N}(\tilde{\gamma}_{h})$$
.

PROOF. Putting $G_0(x) = x$, we have

$$\begin{aligned} \operatorname{Var}_{N}(\tilde{\gamma}_{h}) &= \operatorname{Var}_{N}(R_{\sigma_{0}}(h)) \\ &= \frac{1}{(EX(0)^{2})^{2}} \frac{\sigma^{2}}{N} \Big\{ EX(0)^{2} + 2 \sum_{k=1}^{\infty} \rho_{k} EX(0) X(k) \Big\} \\ &= \frac{1}{N} \Big\{ 1 + 2 \sum_{k=1}^{\infty} \rho_{k}^{2} \Big\} . \end{aligned}$$

We shall compare $\sigma^2 EG(X(0))^2/\alpha^2$ with 1 and $\sigma^2 \rho_k EG(X(0))G(X(k))/\alpha^2$ with ρ_k^2 respectively. Obviously we have

$$\frac{\sigma^2 EG(X(0))^2}{\sigma^2} = \frac{\sigma^2 EG(X(0))^2}{(EX(0)G(X(0)))^2} \ge 1.$$

In the next place, we shall compare $\sigma^2 \rho_k EG(X(0))G(X(k))/\alpha^2$ with ρ_k^2 . For simplicity, we put

$$X(0)=X$$
, $X(k)=Y$, $\rho_k=\rho$.

Let us consider the function

$$Q_G(\rho) = \sigma^2 \rho EG(X)G(Y) - \rho^2 (EXG(X))^2$$
.

In the following, we shall show $Q_{\sigma}(\rho) \ge 0$ for $0 \le |\rho| < 1$. For this purpose, we assume, firstly, G(x) is a simple function and has a carrier included in a finite interval I. We denote this simple function as H(x). H(x) can be expressed as, for some positive integer J,

$$H(x) = \left\{egin{array}{ll} lpha_i; & x \in Z_i \ , & i = 1, 2, \cdots, J \ , \ 0; & x \notin igcup_{i=1}^J Z_i \ , \end{array}
ight.$$

where $\{Z_i\}$ are disjoint measurable sets included in I and $\{\alpha_i\}$ are finite real numbers. Putting

$$S_H(\rho) = EH(X)H(Y)$$
,

 $S_H(\rho)$ and

$$Q_H(\rho) = \sigma^2 \rho S_H(\rho) - \rho^2 (EXH(X))^2$$

are infinitely differentiable with respect to ρ in $0 \le |\rho| < 1$. We shall express $Q_H(\rho)$ in the form of Maclaurin's expansion of ρ . We shall put

$$ilde{H}(t)\!=\!\int_{-\infty}^{\infty}H(x)\exp{(-2\pi itx)}dx\!=\!\sum_{j=1}^{J}lpha_{j}\int_{Z_{j}}\exp{(-2\pi itx)}dx$$
 ,

and

$$\sigma_1 = 2\pi\sigma$$

Using these representations, we have

$$egin{aligned} S_H(
ho) = & \int_{t=-\infty}^{\infty} \int_{s=-\infty}^{\infty} ilde{H}(t) ilde{H}(s) \exp{(-\sigma_1^2(t^2+2
ho ts+s^2)/2)} dt ds \ = & \sum_{j=0}^{\infty} rac{(-1)^j
ho^j \sigma_1^{2j}}{j!} \Big(\int_{-\infty}^{\infty} ilde{H}(t) t^j \exp{(-\sigma_1^2 t^2/2)} dt \Big)^2 \,. \end{aligned}$$

Putting

$$P_{j} = \frac{(-1)^{j}
ho^{j} \sigma_{1}^{2j}}{j!} \left(\int \tilde{H}(t) t^{j} \exp{(-\sigma_{1}^{2} t^{2}/2)} dt \right)^{2}$$
,

we get

$$P_{j} = rac{4(-1)^{j+1}
ho^{j}\sigma_{1}^{2j}}{j!} \left[\int_{t=0}^{\infty} \left(\int_{x=0}^{\infty} H(x) \sin 2\pi t x dx
ight)
ight. \ \left. \left. \left(1 + (-1)^{j+1} \right) t^{j} \exp \left(-\sigma_{1}^{2} t^{2} / 2 \right) dt
ight]^{2}.$$

If j is even, we have

$$P_i = 0$$

and if j is odd,

$$P_t \ge 0$$
 for $0 \le \rho < 1$.

And, especially,

$$P_1 = \frac{\rho}{\sigma^2} (EXH(X))^2$$
.

Therefore, we have

$$Q_{H}(
ho)\!=\!\sigma^{\!2}
ho P_{1}\!+\!\sigma^{\!2}
ho\sum\limits_{m=1}^{\infty}\,P_{2m+1}\!-\!
ho^{\!2}(E\!X\!H\!(X))^{\!2}\!\ge\!0$$
 .

Nextly, for a general measurable function G(x), we can find a sequence of simple functions $\{H_l(x); l=1, 2, \cdots\}$, which have the same properties as H(x) in the above discussion, such that

$$\int_{-\infty}^{\infty} |G(x) - H_t(x)|^2 \varphi(x;\sigma) dx \to 0$$

as $l\to\infty$. Therefore we have $Q_\sigma(\rho)\geq 0$ for $1>\rho\geq 0$. If $-1<\rho<0$, we put $\rho=-|\rho|$. Then

$$Q_G(\rho) = -\sigma^2 |\rho| S_G(-|\rho|) - |\rho|^2 (EXG(X))^2$$
.

And we can find

$$S_{G}(-|\rho|)=-S_{G}(|\rho|)$$

from the fact that G(-x) = -G(x), we have also $Q_G(\rho) = Q_G(|\rho|)$. Finally we obtain $Q_G(\rho) \ge 0$ for $0 \le |\rho| < 1$. This means

$$\frac{\sigma^2 \rho EG(X)G(Y)}{(EXG(X))^2} \ge \rho^2$$

and, therefore, we can get the result of Theorem 2.

Acknowledgement

The author wishes to express his sincere thanks to Dr. H. Akaike for his useful comments and advices.

TOKYO INSTITUTE OF TECHNOLOGY

REFERENCES

- [1] Brillinger, D. R. (1968). Estimation of the cross-spectrum of a stationary bivariate Gaussian process from its zeros, J. R. Statist. Soc., B, 30, 145-159.
- [2] Huzii, M. (1962). On a simplified method of the estimation of the correlogram for a stationary Gaussian process, Ann. Inst. Statist. Math., 14, 259-268.
- [3] Huzii, M. (1964). On a simplified method of the estimation of the correlogram for a stationary Gaussian process, II, Kodai Math. Sem. Rep., 16, 199-212.
- [4] McFadden, J. A. (1956). The correlation function of a sine wave plus noise after extreme clippings, IRE Trans. Information Theory IT-2, 82-83.
- [5] Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs, IRE Trans. Information Theory IT-4, 69-72.
- [6] Ruchkin, D. S. (1965). Error of correlation coefficient estimates from polarity coincidences, IEEE Trans. Information Theory, IT-11, 296-297.
- [7] Rodemich, E. R. (1966). Spectral estimates using nonlinear functions, Ann. Math. Statist., 37, 1237-1256.