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1. Introduction

Let X(n), n=0, £1, +2,..., be a real-valued stationary Gaussian
process with discrete time parameter and
EX(n)=0
EX(n)=d’

EX(n)X(n+h)=d, .

We assume ¢ is known and p, is unknown. In this paper, we shall
discuss the estimation of p,. Let us assume that the process X(n) is
observed at n=1,2,---, N,.--, N+h. In the previous papers ([2], [3]),
we have discussed, mainly, the estimates

Fi= L S X(m)X(n+h)
"N £
and
_ =z 1 1Z
n= 5L 5 Xon) sgm (Xn-+h)
where
1; x>0
sgn (x)= 0; =0
—1; <0 .

In the following, we consider a generalization of estimates z, and #%,.
This generalized estimate is

Ro(h) == 3} XmG(X(n+h)

where G(x) is a measurable function of x satisfying some conditions and
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a is a constant being independent of p,. We can determine a such that
Rg(h) is an unbiased estimate of p,. In this paper, we shall evaluate
the variance of R;(h) for h>>2M, where M is a positive integer such
that |p,|<e holds for a given positive number ¢ when k>M. In this
case, we can easily see that

Var (Ra(h»%%{EG(Xw»w £ 0 BGXO)G(X(0)| +0() -

But in this paper, we give a more precise evaluation of Var (Rg(h)).
Using this result, we can show, asymptotically, that

Var (Rs(h))=Var (7,)

for h=2M. Related discussions are found in Rodemich [7] and Brillinger

[1].

2. Unbiased estimates of p» and their asymptotic variances
Let G(x) be a real valued measurable function of z such that

G1) G(—x)=—G(=)

@G, 2) S: G(x)'p(x; o)dx< + oo ,

and
@G, 3) S“’ 2G(x)o(@; e #0 ,
where
. . — 1 —(x%/24%)
o(x; o) Toea e .

We shall define the process Y(n) such as

Y(n)=G(X(n)) .

Then Y(n) is a strictly stationary process with EY(n))’<+4oo. Let us
construct the statistic

31 X(m)G(X(n+h)) ,

Ra(h)=%—}7ﬂ=l

where

a= S: 2G(x)p(x; o)dx .
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It can be seen that R;(k) is an unbiased estimate of p, and the vari-
ance of R;(h) is given as follows:

Var (RG(h))_-— WEX(O)’G(X(’L))Z

+21 SN B NZ‘. (N—E)EX(0)X(k)G(X(h)G(X(k+h))—pi .

Hereafter we shall treat the processes which satisfy the followmg condi-
tion :

B 3 al<+eo,

(P, 2) for any distinct parameter values k, [, m, n, the
joint distributions of (X(k), X(1), X(m), X(n)) is
non degenerate.

From the condition (P, 1), it follows

2.1) for any >0 there exists a positive integer M
such that |p, |<e holds for I>M.

We discuss the estimation of p, for h>2M, where M is defined as above.
In this section, we shall show the following result.

THEOREM 1. Let X(n) and G(x) satisfy the above stated conditions.
Then we have, asymptotically,

Var (Ro()=" 2 { BG(XO)'+2 £ p. BOXO)G(X (k) + Cer |
+0(3).

where C. y is a constant satisfying the following conditions;
(a) there exists a constant C. such that |C. |<C.,

(b) C. does not depend on N,

(¢) C. tends to zero as ¢e—0.

In order to prove this theorem, we modify the expression of Var
(Rg(h)) as follows;

1

Var (Ra(h»=?%EX(OVG(X@)HV&VFP: ,

~ where
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Vi=22 0 S} (N—EXO) XU)GX(W)G(X(k-+h)

and

vimel L B (N—k)EX(O)X(k)G(X(h))G(X(k+h))-

And we shall show that EX(0)’G(X(h))*/(a®N), V, and V, are expressed
as

1 az o A
— —EG(X(0))*+
9l ;g X A,

25 5 PEC(XO)G(X (k) +22 N +0( N? )
and

ot —~—Blff'”

respectively, where A! and A! are constants tending to zero as ¢—0
and B,y is a constant having the same meaning as C.~ in Theorem 1.
These facts are obtained from the following Lemmas.

LEMMA 1. For any k, 0<k=<M, it holds _
EX(0)X(k)G(X(R))G(X(k+h))= EX(0) X(k) EG(X(0))G(X(K)) +Oe) .

In fact, EX(0)X(k)G(X(h))G(X(k+h)) can be regard as a function of
Prs Ons Pr-r @0d peyn. | p,| might be large, but p,, o»_; and p,,, are less
than ¢. Accordingly we notice p,, p»_, and p,,» and put

Fi(ons prany or-r)=EX(0) X(R)G(X(h))G(X(k+h)) .

Fi(on, prtns on-y) is a differentiable function of p,, psn and p,_y. So we
have the above result.
Using Lemma 1, we can easily obtain

i1 7 2
?WEX(O)‘G(X(h)) SN — EG(X(0))*+

and

V=2l o z‘, 0. BG(X(0))G(X(le)) + A At 0(

o N & N’)'

where A is a constant as stated in the above and A! is a constant
having the same meaning as A2. Now
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é p:EG(X(0)G(X (k)= g‘j p:EG(X(0))G(X(K))
-3 aEGXO)GX®) .
For k> M, putting W(p,)=EG(X(0))G(X(k)), we have
W(ox)=W(0)+0:W'(0) |80y, -
where 0<6,<1. It holds
WO=0 and  [W(p)|pmsy,, [<W,
where W is a constant independent of k. Therefore
3 pBEGXONGXK)|< 3 pAW<eW 3 ol -

Combining these results, we get

1fe A: 1 o(-2
Vi=2- - 3 o BGXO)G(X (k) +--+ 0(“]\?) ’

where Al is a constant as stated in the above.
LEMMA 2. If k> M, we have
EX(0)X(k)G(X(h)G(X(k+h))=a’0r+ F(on, prs Pe+ns Pu-n) »

where F(on, prs Prins Pe-n) 18 @ function of p., px, pren aNd pr_, and satis-
fies the following conditions:
(a) there exists a constant F. such that

N-1
P |F(Pn9 Pk Pr+ns pk—-h) |<Fs ’
k=M+1

(b) F. is independent of N,
(c) F, tends to zero as ¢—0.

Lemma 2 is shown as follows. If we put
X()=p X(U+R)+£(1) ,
&(l) and X(I+h) are mutually independent. We have

EX(0)X(k)G(X(R)G(X(k+R))
=E{paX(h)+£(0)} {or X(k+ 1) +£(R)}G(X(R))G(X(k+h))
= EX(h) X(k+h)G(X(h))G(X(k+R))
+onEX(R)E(R)G(X(R))G(X (K +h))
+ 0 E£(0) X (k+R)G(X(R))G(X(k+h))
+ EE(0)6(F)G(X(h)G(X(k+h)) -
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It holds
EX(h)X(k+h)G(X(R))G(X(k+k)) = EX(0) X(k)G(X(0))G(X(K)) .
And this is a function of p,. So we put
Fy(o:) = EX(0) X(k)G(X(0))G(X(K)) .
Then we have
Fop)=Fy(0)+ 0. Fi(0:0:) ,
where 0<6,<1 and

Fiow)=|-L R

T=0gp;

We can see that Fy(0)=a and | F/(6:0:) | <C; holds for |p,|<e, where C,
is a constant being independent of k.
In the next place, we consider EX(h)5(k)G(X(h))G(X(k+h)). It holds

EX(hy}=EX(k+h)=d",
Es(ky'=c*(1—p}) ,
EX(WE(K)=0"prn—pr0s) ,
EX(W)X(k+h)=cp, ,
Ee() X(-+h)=0 .

So EX{(h)s(k)G(X(R))G(X(k+hR)) is a function of ¢*, p,, p. and p,_,. But
we are now paying attention to the small value of correlation and the
showing that

3 EX(E0GXUNG(Xe+h)

is bounded, independently of N. Therefore we consider EX(h)é(k)-
G(X(R))G(X(k+h)) is a function of p, only and we put
Fi(o)=EX(R)§(R)G(X(R)G(X(k+R)) .
It holds
Fy(0r)=Fy(0)+ 0 F5(0) |,=0,0,, 5

where 0<6,<1. We have Fy(0)=0 and | F}(6;0:) | <C; for |p,|<e, where
C; is a constant being independent of k. Similarly putting

Fi(ox, Pr+n) =EE 0)X(k+ h)G(X(h))G(X(k +h)) ,

we have
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F, 4(.0k ’ Pk+n) = F;,(O, 0) +ka s l)(04Pk ’ 04Px+n) +Pk+nF4( ’)(0410;; ’ 04pk+h) ’

where

FO(B400r Oupesn) = [—aa; Fi(@, y)]

’
@ )=004pg: 045+ 1)

F®(0u05, Oupesn)= [—a%— Fi(a, y)]

’
@ =004p, 042k + 1)

and
0<6,<1.
In the above expression, we have
Fy(0,0)=0
and
| FO(Ou0rs Ou040) [KCL . | FP(Oir, 040e4) | <CP

for | px|<e and |pesn|<e, where C® and C® are constants and independ-
ent of k. -

Finally we consider E£(0)é(k)G(X(h))G(X(k+h)). Joint distribution
of (£(0), &(k), X(h), X(k+h)) is a 4-dimensional Gaussian distribution with
zero mean and covariances

E£(0)¢(k) = 0*(0c — 0n0x-1— PnOr+nt P10x)
E£(0)X(h)=0
E£(0)X(k+h)=0"(0xsn— pnox)
E¢(k)X(h)= *(0x-n—PnPx)
E&(k)X(k+h)=0
EX(h)X(k+h)=d"p -
For simplicity, we put
E£(0)é(k)=0a*0™
E¢(0)X(k+h)=d"0®
E¢(k)X(h)=0d0® .
Then we can express
Fi(o®, 0@, pi)=E£(0)E(k)G(X(R))G(X(k+h))
=F5(O’ 0’ 0)+p(l) aFS (2) aFS

ap“’ 0,0,0 ap‘” ©,0,0
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oF; _1_{ wy_0'Fy @y_0°Fy
+ o 0% (o,o,o)+2 (0®) a(p®) 0+(p ) (o)t lo
2 az-F’S 1 (2 azF's 1) azFS
+ o 902 ,+2p 0 8pLap® |o 20%p 30Pdp, o
0°F, }
2,® 5 ,
+20%0, p®ap, |o

where 0= (00, 6,0?, 6;0,) and 0<6,<]1.
In the above expression, we have

Fy0,0,0)=0.
When o¥=p®=p,=0, it holds
E£(0)*%(k)'G(X(h))G(X(k+h))

= E§(0y¢(k) X(WG(X(h)G(X(k+h))

= E£(0)6(k)* X(R)G(X(h))G(X(k+ 1))

= E$(0)(k)'G(X(h)) X(k+ h)G(X(k+ h))

= E&(0)6(k) X(R)G(X(R)) X(Fe+h)G(X(k+ h))

=0
and

E£(076(kR)G(X(h) X(k+h)G(X(k+h)) = A(K) (pe_n— pnps)

where.lA(k) <A, and A, is a constant being independent of k. There-
fore we can express

OFy = Ay() (0u—n— prpy)

dp 10,00

ﬂ = Az(k) (pk_n — On0x)

9@ law,0,0

oF; = Ay(k) (0x-n—ror)

apk €0,0,0)

where | A(k)|<A and A is a constant being independent of k. And
furthermore, the absolute values of
1 _&F, _1 @F | _1 &R
) a(p(l))? o’ BZ(k)_E (@) o By(k)= 2 9p®dp, |0
are all less than a constant B, which is independent of Z.

We shall arrange the above results:

EX(0)X(k)G(X(h)G(X(k+ h))
=a’ph+pror FL(0201) + 010 FY (B30

B,(k)=
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+on{o:F, 4(1)(045’& s 0i0x.42) + PrinF§ ’)(04{’& » 0i0e41)}
+(px-n—pr0) {0 As(K) + 0P Ay(K) + 0 As(K) }
+ (o)’ By(k) + (o) By(k) + p By(k)
+0VpPBy(k)+pV 0 Bs(k) + pPp. Bo(k)

=0+ F(pn, Ocs Orsns Pe-s) -

From the above result and the properties (P, 1) and (2,1), we get the
assertion of Lemma 2.
Using Lemma 2, we can easily obtain

V2 Ph+Bs N/N

where B, , is a constant having the same meaning as C,  in Theorem 1.
Combining the above results and putting C.y=(A:+ AL+ B, y)a*/d,
we get Theorem 1.

3. A minimum variance estimate
In this section, we ignore the terms C. /N and O(1/N?) in the ex-
pression of Var (Rg(h)) in Theorem 1 and consider the main part

Vary (Ra(h)) —}—%{EG(X(O))’+2 ;21 PkEG(X(O))G(X(k))} .

Now we shall prove the following theorem.

THEOREM 2. Let X(n) and G(x) satisfy (P, 1) and (P, 2) and (G, 1),
(G, 2) and (G, 8), respectively. Then we have, asymptotically,

Vary (Rg(h))ZVary (72) .
PRoOOF. Putting Gy(x)=2, we have
Vary (7»)=Vary (Rq (h))

1 ¢ .
= RO N IEX(O) +23) p,‘EX(O)X(k)}

:W{1+2§pi} .

We shall éompare FEG(X(0))}/a* with 1 and ¢*o. EG(X(0))G(X(k))/a® with
o respectively. Obviously we have

cEG(X(0)) _  F4EG(X(0))
o (EX(0)G(X(0)))* —

In the next place, we shall compare oo, EG(X(0))G(X(k))/o? with pi. For
simplicity, we put
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X(0)=X, X(k)=Y, 0c=p -
Let us consider the function
Qu(p)="pEG(X)G(Y)—p(EXG(X)) .

In the following, we shall show Q;(p)=0 for 0<|p|<1. For this
purpose, we assume, firstly, G(x) is a simple function and has a carrier
included in a finite interval 1. We denote this simple function as H(x).
H(x) can be expressed as, for some positive integer J,

ai;wEZi, 7:_—‘1,2,"‘,9],
H(x)= J
0; z¢U Z;,
i=1

where {Z,} are disjoint measurable sets included in I and {a;} are finite
real numbers. Putting

Su(p)=EH(X)H(Y) ,
Sx(p) and
Qu(p)=7’pSu(p) — P EXH(X)):
are infinitely differentiable with respect to p in 0<|p|<1. We shall

express Qu(o) in the form of Maclaurin’s expansion of p. We shall put

H(t)= S”

J
H(x) exp (—2ritx)dx =,E a, S exp (—2mitx)dx ,
oo =1 Z/
and
0,=2rn0 .

Using these representations, we have

Sulo)= Swm S"m H(t)H(s) exp (— oX(t*+ 20ts +5%)/2)dtds

_ i (—1)p/a?

P (1" Bty exp (—att2ra) .

Putting
P,= _L—lz"ﬂ (S Hi)t! exp(-—aftz/Z)dt)z,

we get

P,=i(:.%“9’”i’[§” (S“’ H(z) sin gztxdx)

t=0

. (L4+(=1)"1)¢ exp (—U3t2/2)dt]

2
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If j is even, we have
P,=0
and if j is odd,
P,20  for 0<p<1.
And, especially,

P, =%(EXH(X))’ .
Therefore, we have
Qu(p)=7pPi+'0 3} Pynyi—(EXH(X))'20 .

Nextly, for a general measurable function G(x), we can find a se-
quence of simple functions {Hy(x); l=1,2, ...}, which have the same
properties as H(x) in the above discussion, such that

| 166@)—Hi@) oz o)dz—0
as [—>oo. Therefore we have Q;(0)=0 for 1>p>0. If —1<p<0, we
put p=—|p|. Then
Qs(p)=—d*|p|Se(—|p)—|p ' (EXG(X)).
And we can find

Se(—[o))=—8s(p|)

from the fact that G(—x)=—G(x), we have also Q;(0)=Qs(|p|). Finally
we obtain Q;(p)=0 for 0<|p|<1. This means

7pEGX)G(Y) -,
(EXG(X))y? —

and, therefore, we can get the result of Theorem 2.
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