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1. Summary

This paper offers some selection procedures based on U-statistics
related to Bhapkar’s V and W tests [3], [4] and Deshpande’s L and D
tests [4], [6] for the several samples problems. Their efficiencies in
comparison with ‘standard’ procedures are obtained on the lines of
Lehmann [10] for equal sample sizes, and the results are extended to
the case of unequal sample sizes.

2. Introduction

Selection procedures for choosing the ‘best’ among C populations
according to a location parameter have been studied extensively in the
statistical literature (e.g. 1, 11); very few, however, have been dis-
cussed for the scale parameter problem (e.g. 2, 7). We consider here
some procedures based on generalized U-statistics, related to the V, W,
L and D statistics, for selecting the ‘best’ amongst C populations. For
convenience, we define the best as that population which has the small-
est value of the characterizing parameter. Obvious modifications would
give procedures for selecting the population with largest value of the
parameter.

Suppose we have C independent random samples (%, %i,- ", %),
of size m, from the ith population =, with a continuous cumulative dis-
tribution function (c.d.f.) F;, 1=1,2,--.,C. We form C-plets by taking
one observation from each sample, and define functions ¢, from the set
of C-plets as follows:

1 if z,<xz;, Vi#e
¢i(xlr Loy ey m(,')’= .
0 otherwise .

Let
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U,= 1 2’..'.201551(371,1,...,;1;0,,0), for :=1,2,...,C.

U nj =1 ag=
These generalized U-Statistics form the basis of the V-test. Similarly
with
1 if x.>x;, Vi#1
(g, o,- - -, zo)=1 —1 if x,<x;, Vi#1
0 otherwise ,
we get U-Statistics (defined as before) leading to the L-Statistics. If
1 if #,<w;, YVj#1i or a,>x,, Vij#i
¢?)(xly Loy vy x0)=
0 otherwise ,
or

¢$:3)(xl’ Loy e, xc):-"'—l ’
where x; has rank r among z,, j=1,2,---, C,

the corresponding U-Statistics lead to the D and W-Statistics respec-
tively.
The L and W statistics had been offered for testing the hypothesis

H,:Fi=F,=-..=F,,
against the location alternatives
2.1) F(z)=F(x—0),

not all #’s being equal, for symmetrical F'; V was offered against 2.1)
or the scale alternatives

(2.2) Fix)=F(x—pl0) ,
not all #’s being equal, for skew distributions F, while D was offered
against (2.2) for symmetrical F.

We now use the related U-Statistics for the selection problem.

3. Location problem, equal sample sizes
Consider first the location problem with
Fi(x)=F(x—86,) , 1=1,2,...,C.
Let 61<6=<--+=<0;; be the ranked #’s. Suppose

N=Ng=-+*=Ng=n, say .
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In the ‘standard’ setup with F normal c.d.f. Bechhofer proposed
selecting the population corresponding to the smallest z,, the mean of
the i¢th sample, and the problem discussed was to determine the sample
size ‘n’ required so that

3.1) P (correct selection)=y ,
where
0[1]§0[2]—‘A ’ with 7 and 4

pre-specified constants. It was pointed out by Lehmann [10] that in the
nonparametric setup we can have an asymptotic solution if we consider
the sequence of distributions

(3.2) FMx)=F(x—6), 6P=n"""9,,
and require the guarantee that

3.3) lim P (correct selection)=7y
when

3.4) 0= 0,,—4 .

Such procedures based on rank-scores have been offered by Lehmann [10]
and recently by Puri and Puri [12].
The procedure based on U-Statistics offered now is:

(3.5) Select =, if U.=mfxx U,.
The probability of correct selection of the ‘best’ population (i.e. with
the smallest ¢, among 4, 6;,- - -, 8;) under the condition (3.4) is given by
(3.6) PIU>U, Vj+s8/0,<6,—4 Vj+s].
We now use the following result from [3];
LEMMA 3.1. Assume the sequence of distributions
F™(x)=F(x—mn""%0,)

of independent random variables x;;, j=1,2,---, n, for each index n=
1,2,-.- where n,=nr; with r; a positive integer, 1=1,2,-..,C. Suppose
Surther that F possesses a continuous derivative f and there exists a
function g such that

[[fy+h)—f@W)I/h|=9(y)
and
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| s s@iy<o .
If N=3In; and U'=[U,, U,,--,Ucl, L'=[1lix¢, then, as n—oo, the

limiting distribution of ¥YN(U—C™'L) is C-variate mormal with mean
w33 r)* and covariance matriz S =[o,]=2 given by

= —zc<coi -3 o,)
where
2o=|"_n-Fanrway
and

= 025021) [(0;11)2 t2 %] ’
ST [Zg}l C C]’ oy

TN (K 1,

For the immediate application we take r,=1 for all 1.
Now the probability of correct selection given by (3.6) is

=P[U,—U,>0 Yj#s/0,<0,—4 Y j#s]

=P[Z,<ZCC\/202“1(0,—0,) Vj#s/0,—0,24 ques]

where the (C—1) dimensional vector with components

_ YnC(U,—U)+1,C"6,—4,)
¥2C[2C—-1 '

is, in the limit, distributed as a (C—1)-variate normal variate, say Y
with zero mean vector and covariance matrix B=[b,] with b,=1, b,,=
1/2, i#7.

Thus, for large n, the probability (8.6) is approximated by

Z, JjFs

3.7) P[Yj<1gC\/2CZ_1 4, Vj=1,2,---,C—1]

where

4;=043— 024 .

Since the lower bound of (3.7) under (3.4) is attained at the ‘least
favourable configuration’

0[j]=0[1]+4 ] j=2’ 3;"'901
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it follows that in order to satisfy (8.3) we must have
3.8) 2.CV(2C-1)]24=34,
where

PlY,<é Vj=1,2,.--.,C—1]=y.

Thus an asymptotic expression for the smallest ‘n’ necessary is pro-
vided by

20°
3.9 -«
(8.9) "= eC-)5CE

writing
t=0H—068  for n~V4

in view of (3.2) and (3.8). It is to be noted here that (3.9) provides
only a large-sample approximation so that (3.3) holds; as Rizvi and
Woodworth [13] have shown, we cannot claim

P [Correct Selection]=7r,

when p,=n""’4, necessarily for any finite n. A similar argument for
the Bechhofer procedure using samples of size m leads to the asymp-
totic expression (for smallest m)

me— 24%9°

2
Hm

(3.10)

where ¢ is the variance of distribution F' in (8.2) and

HE= 08— 05
With the same configuration of @-values, i.e. with & and 6*™ for
the two respective procedures equal, we set p,=pk; therefore the
asymptotic expression for the ratio of smallest sample sizes necessary
in order to satisfy (3.3) is given by

(8.11) %:ﬂzc—l)czzg .

Thus the relative asymptotic efficiency of the proposed procedure with
respect to the standard Bechhofer procedure given by (8.11) is precisely
the same as that of the V-Statistic based on U,’s, with respect to the

standard F-Statistic, based on X,’s, for testing the hypothesis H,: Fi=
F,=...=F, aginst location alternatives (2.1). Since in many situations
(for example see [3]) the V-test is asymptotically more efficient than
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the standard F-test, or some other nonparametric competitors, the same
applies to the corresponding selection procedures.
Along the same lines it can be shown that the selection procedures

(3.12) Select =, if U,=mtin U;

using U-Statistics corresponding to functions ¢* and ¢® in Section 2
have asymptotic efficiencies (relative to the Bechhofer procedure) the
same as those of the L and W-Statistics, respectively, with respect to
the F-Statistic, viz.

#ec-1)(C-11(2¢2%) N~

(3.13)
2C—-2
?|(6=)
and
(3.14) 1242; .
Here
(3.14) #="_reFe)y.

Incidentally, (3.14) is also the efficiency of the procedure using mean
ranks corresponding to the Kruskal-Wallis [8] statistic.

4. Llocation problem, unequal samples

The assumption of equal sample sizes does not seem to be necessary
for comparing performance of two selection procedures. Suppose ‘n,’
is the size of the ith sample and we use the procedure (3.5). In order
to get an asymptotic solution we require the same guarantee (3.3) un-
der (8.2), but ‘n’ here denotes the index n=1,2,--- and we assume
n,=mnr;, r; being a fixed positive integer.

The probability of correct selection (3.6) is

2 2
P[VN(U, - U)+1,C(S ) 0,-0)<2oC(S ) "0,~0)
Y j#5/0,<0,— 4, quts]
and this is approximated for large ‘n’ by

4.1) P[W}‘)<CICA,\/M, Vs ]
ry+T

8
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where 4,=60,—6,=24, and the (C—1) vector W has normal distribution
with zero mean-vector, unit variances and correlation matrix

P =071

with
®_ 7Ty ]”2 sEiEj#S
b [(r¢+r.)(1'f+7'.) ' I
in view of Lemma 3.1. For each s=1,2,--.,C, the lower bound of

(4.1) is attained at 4,=4 for all j#s. We thus have

4.2) min P[W}’)<\/MC/ICA v jqbs] =7.
s=1,000,C trj_|_'rs

It may be noted here that the left-hand side is a continuous non-
decreasing function of 4. Suppose, therefore, (4.2) is satisfied for 4
equal to 8 with the minimum attained for s; then we have g given by

(4.3) P[W,‘”< /%:T”:;ﬂczaﬁ, quks] —r.

A large sample solution for the smallest ‘»’ necessary is provided by
(4.4) n=PBYp

writing, as in (8.9), 4=y, with p,=63—60.
A parallel argument for the Bechhofer procedure, using index m,
leads to the equation

(4.5) min P[W}"<\/ﬂ-4— Vjaes]:r.
$=1,2,001,C Tet+1; O

Then (4.5) would be satisfied for 4 equal to « given by

p[W;s><\/i @ Vj;es] =7

r,+7 ©
with the same s as in (4.3). Therefore
4.6) a=+v2C—1C2,p0 .
The large sample solution for the smallest ‘m’ necessary is
(4.7 m=a’|p

writing, as in (8.10), 4=+my),. The large sample approximation for
the ratio m/n is then
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m _ ot
n Bl

Setting p,=g/,, as in the case of equal samples, we get the asymp-
totic efficiency of procedure (8.5), relative to the Bechhofer procedure,
in the form

(2C-1)C*2%4* .

This is precisely the same expression obtained in the case of equal
samples.

Similar results would follow for procedures (3.12) corresponding to
functions ¢ -and ¢®.

5. Comparison of performance

The above asymptotic relative efficiency is obtained by comparing
the smallest sample sizes necessary in order that (3.3) holds and, thus,
reflects the relative performance at the least favourable configuration
0iy=0+4, j=2,---,C. For any given configuration 6,—6,=4,, the re-
spective probabilities of correct selection are approximated by expres-
sion (3.15) and the one obtained after replacing in (3.15) v2C—1 C1,
by 1/e. These two expressions are equal if

V2C—1CagV n (657 —07) = Vm (65— 6™) o
asymptotically, for all j#s. With the given configuration, taking
(P —o)=(0—6™) ,

we get the same expression for the asymptotic relative efficiency for
any configuration.

6. Scale problem

For the scale problem we now assume (2.2). Suppose ‘p’ is in the
nature of parameter like median, we then offer the selection rule,

6.1) Select =, if U,=mfixU, ,

corresponding to function ¢. Using the index n=1,2,--., and sample
sizes n,=nr,, as in Section 4, we assume the sequence of distributions

() =F[(x—p)6]
with
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(6.2) O =1+n"1%,

and require the same guarantee (3.3) under condition (3.4).

need the following result from [6] incorporating the necessary modifica-

tion in Lemma 38.1.

LEMMA 6.1. Assume the sequence of distributions

F(x)=F(x—p)1+n7"0)]

of independent random variables [z, j=1,2,---, n], for each index ‘n’,
n,=nr;, with ‘r,” a positive integer, 1=1,2,---,C. Suppose that F pos-

sesses a derivative f and there exists a function g such that

| L@=LGte) | < o
A <

for sufficiently small ‘h’ and
[Uels@1r @@ <o, i=1,2,,20-1.

We assume further that there exists A<oo such that
Pel|z| f(x)<A]=1.

Then, as n— oo, the limiting distribution of YN(U—C™'L) is C-

variate normal with mean vector-(3] r,)*n, where
n=6o(CO—510,) ,

with

to=—|2pr@n-F@1-ds,
and the covariance matric T as in Lemma 3.1.

The probability of correct selection
P[U,<U, Vj+s8/6,<0,—4 V j+s]
=P[VN(U,-V)+6,C0(5n) 0,-0)
<& C(sin) 0,—0), Vitsib<0,~4],

and this is approximated by

10O (20— 1)7', Ts .
6.3) P[W<Ceod, \/—'r,+r . Vis]
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as in (4.1). Proceeding along the same lines as in Section 4, a large
sample solution for the smallest ‘n’ is provided by

(6.4) n=g"l

where g’ satisfies equation like (4.3) in place of g with &, replacing 1.

We shall compare the above procedure with the parametric proce-
dure used when F is mormal; 6, then, is the reciprocal of the standard
deviation ¢;. This procedure is

(6.5) Select =, if Vi=maxV,
i

where
v=3 (2~ %)(m~1) ,
m; denoting the size of the ith sample. The probability of correct
selection
P[V,<V, Vj+s/6,<6,—4]

is approximated for large ‘m’ by

(6.6) P[W}-><A, | 2rme Vj;bs]
rj+r:

in view of the result (see [9], p. 274) that
vm[log V,+2log 65™]

is asymptotically normal with zero mean and variance equal to 2/r,.
Proceeding again along similar lines as in Section 4, a large sample ap-
proximation for the smallest ‘m’ is provided by

6.7 m=d"[u
where
o=+ (2C—-1)[2CE:p .

The argument as in Section 4 leads to

6.8) Lz—lczs’c ,

as the asymptotic efficiency of the procedure (6.1) relative to the pro-
cedure (6.5) if F' is normal. This is precisely the asymptotic efficiency
of the V-test based on U’s relative to the test proposed by Lehmann
([9], p. 274) based on V’s against scalar alternatives if F' happens to
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be the normal c.d.f.
It may be pointed out here that if g in (2.2) is of the type of a
‘natural’ location parameter like p in

f(@, p, )=06e“"", xzp,

instead of being of the type of median in the discussion so far in this
section, the selection procedure offered is

(6.9) Select =, if U;=minU;.

It may be verified that the expression (6.8) continues to hold as the
asymptotic relative efficiency; we only need substitute &,=—¢&; in the
preceding discussion.

Along the same lines it can be shown that the selection procedure
using the rule

Select =, if U,=maxU,

using U-statistics corresponding to function ¢® in Section 2 has asymp-
totic efficiency

o(e-1yec-v(*G7]) (Eo+88),
4o+ (%528 cr+ac-2) |

(6.10)

with
£r— S 2. f{(x) [F(z)]°dx

relative to the procedure (6.5), this is again precisely the asymptotic
efficiency of the D-test {4] relative to Lehmann’s test if F' is normal.

Before closing we may point out here that the approximation to
the smallest sample sizes of the type (3.9), (4.4), (6.4) etc. hold for any
F satisfying conditions in Lemma 8.1 or 6.1 while that viz. (3.10) or
(4.7) for the Bechhofer procedure holds only if F' has finite variance;
such an approximation for the scale procedure (6.5) is.available only if F'is
normal. In this sense the procedures offered here, based on U-Statistics
and the Bechhofer procedure may be called non-parametric while the
one (6.5) related to Lehmann’s test is essentially parametric.
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