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1. Introduction

Precision of estimates of treatment contrasts in two-way designs
(i.e., designs in which heterogeneity is eliminated in two directions:—rows
and columns) can be increased by the use of information available from
inter-row and inter-column comparisons in addition to the usual “intra”
estimates. Let p, denote the ratio of the inter-row variance to the
intra-row and column variance and similarly p, denote the ratio of the
inter-column variance to the intra-row and column variance. p, and p,
play an important role in the combined inter and intra estimates of
treatment effects; but these are usually unknown. The usual procedure
is then to substitute estimates of these, available from an analysis of
variance table for the data. As a result, the final estimate of treat-
ment contrasts are no longer unbiased, in general. The estimates of
o, and p,, that are used are also not unbiased. In this paper alterna-
tive unbiased estimators of p, and p, are proposed. These estimates have
certain desirable properties and in addition, with their use the final esti-
mates of treatment contrasts turn out to be unbiased. However, as esti-
mates of p, and p, are used and not p,, p. themselves, an increase in
the variance of the treatment estimates is inevitable. We have con-
sidered only a particular class of two-way designs for this, in this paper.
If L denotes the row-incidence matrix and M, the column incidence
matrix, we consider only those designs for which LL’ and MM’ have
the same eigenvectors. Many of the two-way designs used in practice
satisfy this requirement. For example, designs having property A and
property B, as defined by Zelen and Federer [7] satisfy this requirement
and the results of this paper are valid for them. Most of the results
in this paper are extensions of similar results by J. Roy and K. R.
Shah [5], in the case of one-way designs or incomplete block designs.

* This research was sponsored by the office of Naval Research, Contract No. N00014-
68-A-0515 project No. NR042-260.
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2. Two-way designs

We consider a two-way design in which n=wuw’ plots are arranged
in v rows and %' columns and v treatments are assigned to them in
such a way that each treatment is replicated r times; the ith treatment
occurs [l;; times (l;;=0 or 1) in the jth row and m; (m,;=0 or 1) times
in the kth column. The vXw and vXu’' matrices L=[l,,], M=[m,] are
called the row and column incidence matrices respectively. FE,, will de-
note an axb matrix, all the elements of which are unity. It follows
that

(2.1) LE,=rE,, E,L=v'E,,
(2.2) ME,,=rE, , E,,M=uE,,
and

(2.3) n=uu'=vr .

The model assumed is

(24)  yp=(ta+pttiten) J=1,2,---,u, k=1,2,---, %
when l,,=m, =1 and, where

(2.5) yn=yield of the plot in the jth row and kth column,
(2.6) p=the general mean,

2.7 a,=effect of the jth row,

(2.8) B.=effect of the kth column,

2.9) t,=effect of the ith treatment,

(2.10) €;;: =€error.

e.;; are assumed to be normally and independently distributed with zero
means and a common variance ¢*. We shall express this by writing e,
are NI(0, ). When, however, inter-row and inter-column information
is to be recovered, we make a further assumption that the a, are
NI(0, ¢?) and the 8, are NI(0, ¢}) and that «;, B, e, are all independ-
ently distributed. For ¢=1,--.,v; j=1,---,u; k=1,---, %', we shall
use the following symbols also:

(2.11) R;=3 y,,=total of the jth row,
k

(2.12) C.=X yx=total of the kth column,
J
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(2.13) T,=total of the plots receiving the ith treatment
(2.14) g=§j} R,=2kj Ck=‘j;‘, ‘kV_‘_, Y;.=the grand total,
We need the following vectors:

t,=[t1!"'yto]v a"_‘[al,"'yau]’ ﬂ’z[ﬁlx"'yﬁu’]

RI:[RI!"'!Ru]’ C":[Cl:"'y Cu’]) T,Z[Tlr'°',Tv]°
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Only treatment contrasts i.e., functions of the type &t where E, £&=0
are estimable. The intra-row and column estimate of &t will be denoted

by &1, the inter-row estimate alone (when it exists) by g't,, the inter-

column estimate alone (when it exists) by &'f, and the combined intra

and inter-row and column estimate by &’t. The reduced normal equa-

A

tions for determining f, t, fc or t are given below :
(a) Only intra-row and column estimates
(2.15) Q=Ft
(b) Inter-row estimates only

(2.16) Q,=—;,—L'L't:

(¢) Inter-column estimates only
2.17) Q,;%MM’&

(d) Combined intra and inter estimate

(2.18) P= (WF+V—V,LLL'+-VZ—°-MM')E .
u
Here
(2.19) Q=T-LLr-1MC'+™E,,
u U n
(2.20) Q=L LR-"E,,
u n
(2.21) Q=1mMc-"E,,
u n

(2.22) F=rl- X LL-1MM+TE,,
U w n
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(2'23) P=WQ+WrQr+er )
1
2.24 ==,
(2.24) =
1
|| —
r 02 '0‘:
(2.25) t
1
Wy=—"
@ +ud
The quantities p, and p, mentioned in Section 1 are respectively
w w
2.26 = d . = .
(2.26) =y on =y

One has to solve (a), (b), (¢) and (d), in conjunction with some suitable

additional equation like E|,t=0, to obtain any solutions {, i,, t:, t of
these 4 sets. It can be readily seen that the variance-covariance matri-
ces of @, Q,, Q. are respectively (1/W)F, (1/W,)(LL'[u'—r*E,,/n) and
a/w)(MM'/u—r*E,,/n). The covariance matrix of any two of them is
null.

We assume that the rank of LL' is q,+1, of MM’ is q.+1 and that
LL' and MM’ have the same eigenvectors. Martin and Zyskind [8] have
observed that this condition is sufficient for best combinability of inter
and intra information. Note that (1/4/v)E,; is an eigenvector of both
LL', MM', the corresponding eigenvalues being u/r and ur respectively.
Let the other eigenvectors of LL' and MM’ be &, (s=1,2,---,v—1) and
we shall choose them to be all unit and mutually orthogonal (orthogonal
to 1/4/v)E,, also). Let the corresponding eigenvalues for LL' be ¢, and
for MM' be g,. Of course, e¢,=0 for s>gq, and ¢g,=0 for s>q.. As a
result of these assumptions, F' also has the same eigenvectors viz

B, 611 Bt
the corresponding eigenvalues being
$=0, ¢y, +, Poy
where
(2.27) d=1— ;, e,—%g, s=1,2,--+,v—1.

All treatment contrasts are estimable (see Chakrabarti, [1]) if and only
if rank F=v—1 and we assume so. ¢, (s=1,---,v—1) are then all non-
null. From (2.18), the combined inter and intra estimator of &t is (s=
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(2.28) e 1= WEQ+W.(£Q)+ W.(£Q)
W, + (W, [u')e,+(W./u)g,

_ EQ+(1p)8Q,+(1/0)EQ.
&+ @/ u’p,)e, +(1/upc)g,

It can be easily proved that this is unbiased for &, its variance is

(2.29) 1

Wo,+ (W, [u')e,+ (W.[u)g,
and that
(2.30) Cov (&2, &t)=0  s+l.

However p, and p, are not known and we use some estimates P, and P,
of them in (2.28). In that case, the difference between this latter ex-
pression and (2.28) is easily seen to be (we use p,, o, or P,, P, in the
paranthesis of (2.28), to indicate whether we are referring to the true
values or estimates),

(2'31) e;i(Pry Pc)_e;Z(Pr’ Pc)zZ: ’ say S'—‘-]., 21’ * %y v—1

where
2.32 z=9e(1_ 1) v+ (l— 1) —
- u! (Pr P, w+uu’pc o, P, (w0, —.)
ﬁ&(l__L> __eg, (l_ 1 > B
+ u pc Pc x‘ uu,pr pc Pc (w’ m‘) ’
(2.33) w=5Q _wEQ,
) ¢! es ’
(2.34) p,=5Q _u8Q.
¢' gt

In the next section, we consider the classical estimates of p, and p,,
suggest some alternative estimates of them, having some desirable pro-
perties and examine whether the expected value of Z,, above reduces

to zero, for these estimates, so that even &(P,, P,) is unbiased for &t.

3. Structure of the analysis of variance

The adjusted treatment sum of squares (s.s.) in the analysis of vari-

ance for such a design is @'f, where { is any solution of (2.15) and can be
»—1

easily seen to be equal to 3} (£/Q)Y/¢,, (d.f.v—1), as &, are eigenvectors
8=1

of F, with ¢, as the corresponding eigenvalues. Also the error s.s.
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(Intra-row and column) viz

Min {y;,—E(y;;| a,8)}*

&, S,

reduces to
6D E=(S S u-L)-5 @@ —R R —gm) - (£2-2)

In other words,

E;=total s.s.—treatment s.s. (adj.)
—row s.s. (unadj.)—column s.s. (unadj.).

From the least squares theory, it is well-known that E, has the z%*
distribution and is independently distributed of @, any row contrast or
any column contrast. E; has (n—1)—(w—1)—(u—1)—(w'—1)=» degrees
of freedom (d.f.). It can also be shown that, in the analysis without
recovery of inter-row and inter-column information i.e., when a, 8 are
fixed effects, the adjusted row s.s. for testing the significance of row
effects viz

Min X3 Z Wp—p—B—t)— Min >3 Yj— ﬂ"aj—ﬁk—ti)2
mBt ta Bt

comes out to be
32  R=REW-gn+E €Q)s,
—(T—%MC)(H—.};MM')*(T—%Mc) .

Here (rI—(1/u)MM')* denotes a generalized inverse of rI—(1/u)MM’
(Rao [4]). We can take

3.3) <rI—%MM’>*:§ <r—%g,>_leseé

as §, are eigenvectors of rI—(1/u)MM' and r—(1/u)g, are the corre-
sponding non-zero eigenvalues. Using (2.19), (2.20), (2.27) and (3.3) in
(3.2), we find

(3.4) R.=(R'Rw—gm)+3 Qs —v'S EQ+EQ)IwWs. +e) .

It has u—1 d.f.
When we recover inter-row information, we minimize

1 > (R,~E(R)}*
u i=1
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with respect to p and ¢, leading to (2.16). The minimum value is called
the inter-row error s.s. We shall denote it by E, and comes out to be

(3.5) E,=(R'R/w'~¢'n) - Qit,
=(R'Ru ~g'jm)—u' 3 (§Qe,

and has u—1—gq, d.f. It is independently distributed of @, and by least
squares theory, has the X (+u's?) distribution as V(R,)=u'(®+u'd?).
Obviously E, is the sum of squares due to those row-contrasts, which
are uncorrelated with @,. This E, is a part of the adjusted row s.s.
R, also and we can show, by a little algebra, that

(3.6) R=E,+3 6% 4

. a T = u,¢‘+e‘ 8
where
(3.7) wlzeg_Q_M s=1,,--+,q, .

¢8 el
Observe that w, are normal variables with
3.8) E(w,)=0
1/1, 4

3.9 Viw, =_<_ ﬁ)
(3.9) (w,) W ¢,+ .
and
(3.10) Cov (w,, w,)=0, s+l .

In exactly a similar manner, the adjusted column s.s. C, is (d.f. u'—1)
B11)  (C'Clu—gin)+E €Q8)—u S EQ+EQ) (ud+0)

The inter-column error s.s. E, (with d.f. «'—1—gq.) is

(3.12) E,=(C'Clu—g'/m)—u 3 (§Q.)'10. -

It is independently distributed of @. and has the X*(¢*+ug?) distribution.

It is the s.s. due to those column contrasts which are uncorrelated with
Q.. Also it is a part of the adjusted column s.s. C, and

3.1 Co=E, 43— 9P g
. 3 o= c+ 8—"x8
( ) =1 u¢c+g:

where
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(8.14) x,:ﬁé.q-.__“_eégc_ 8=1,2,---,q.

are normal variables with

(3.15) E(x,)=0
=1 (1, w

(3.16) V)= e )
(3.17) Cov (x,, x;)=0, s#l
and

@, , s=l
(3.18) Cov (w,, x¢)={

0, s+l ,

Consider any row contrast a’R (where o'E,;=0), which is uncorre-
lated with @,. Then it is easy to observe that a’R is uncorrelated with
any w,. Since FE, is the s.s. of contrasts like this a’R, it is obvious
that E, and w, are independently distributed. Further, as

Cov (R, C)=(c*+a>+d)E,.
and row contrast is uncorrelated with C and hence
Cov (¢’'R, x,)=0 .

Thus FE, is independently distributed of z, (s=1, 2,---, q.). By a similar
reasoning, E. is independently distributed of w, (s=1, 2,---,¢,) and of
Ly (8=11 2:' *ty qc)'

4. Estimation of o, and p.

By least squares theory, E(E;|a, 8)=vs’ and hence, even when a, 8
are random, E(E,)=vs® and E,/v provides an estimate of ¢°. Now from
(3.4),

“4.1) ER)=(u—1)d*+u'(u—1— 7)o’
where
(4.2) =3 &

=2 we,te,
Similarly

4.3) E(C)='—1)+u(w —1—1,)a
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4.4 =5
“d ’ §u¢,+y.

Hence, the classical estimates of ¢ and o2 are respectively

Ag R,,,—(u—-l)E,/v

4.5 -
(*5) T Wu—1—1)
B3y 28— (u—1E s
(4.6) = Cluwéte (by 3.6)
w(u—1—17,)
and
o Co—(W —1)Eyv
4. 1=
@D = —1—7)
E+3 9% g —1)Ef
(4.8) = =L U, (by 3.13).
wu'—1—7.)

These however, could be negative. From these estimates, the classical
estimates of p, and p, are obtained as

4.9) p.=(Estimate of ¢’+u's})/Estimate of o*
=R/ (u—1—1r)E;—1./(u—1—1,)
q
4.10 SR — { E,+5 0 ,wz} T
( ) (u—1—17,)E; +§ u'g,+e, u—1—1,

and similarly

A C
4.11 = It
(411) b= W —1—1) w—1—7
qc
4.12 T ) ] I
(12 (' —1—1)E; & ug,+9, w—=1-—7.

p. and p, are not unbiased and they could be less than 1 also, even if
p, and p, cannot be. The bias can be removed easily. From the dis-
tribution of E,, E., E., %,, o, (which have been already stated in the
last section), one can show that

AN (u—1) T
413 E(p)= .
(4.13) == " u=1-7,

and hence
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s _(u—1—7)—2) (. T
(4.14) por= (u—1) {p,+ u—1—7y, }
_ R(u—1) »-—2
T EJ v

is unbiased for p, and similarly

(4.15) Z’cz Ca/g"',/u_l) . v:Z

is unbiased for p,.
Following J. Roy and K. R. Shah [5], we consider a more general
form than (4.10) viz

aE,+ 3 bt
—_ $=1

4.16 p,
(4.16) Z,

+c
where a, b,, ¢ are arbitrary constants and are so determined that

(i) P, is unbiased for p,,

(ii) the dominant term viz the coefficient of p? in the variance of
0r, is minimum. From the distributions of E,, w, and E,, we can find
E(P,) and V(P,) and this, after a considerable algebra, leads to (or we
can use J. Roy and K. R. Shah’s results for one-way designs with ap-
propriate changes to suit this situation)

(4.17) a= 3(v—2)
3(u—1—gq,)+u+144q,)q,
(4.18) b,=(u+1+4q,)ae,/3u’
and
_1 9, b
4.19 = 5
(4.19) e=—7>gb by ry

By changing E, to E., q, to q., w, to z, in P,, we shall get a similar
estimate P, of p, and the values of a, b,, ¢ for that can be easily ob-
tained from (4.17), (4.18) and (4.19) by making these changes there and
in addition changing  to «’.

This estimate P, (or P,) of p, (or p.) is better than the classical
estimate, as it is optimum in a certain sense viz the coefficient of p?
(or p?) in its variance is minimum.

Following Roy and Shah we also consider a quadratic form of the
type

(4.20) boE+b.E, +3) a6}
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to estimate o’+u's:. The constants b,, b,, a, are so chosen as to make
this an unbiased estimate and minimize the dominant term in its vari-
ance viz the coefficient of p?. This yields

E T e 1 { & ew’}
4.21 = i LA Er sWs
(4.21) Y v(u—1) :2=1 we, u—1 +§-1 u

as an optimum estimate of o*+u'e’. If we employ this method for
estimating ¢*+ug? or ¢° alone, we get

Ei & gs _|_ 1

(4.22) v, =—
v(u'—1) =1 up, u'—1

q, 2
{Ec'*—z gaxs }
=1 U

for estimating ¢°+u's? and
(4.23) v=E»

for ¢*. Using these estimates, we find again that an unbiased estimate
of p, is provided by

(4.24) <1_E>?L._ 2 13 e
v/ivy, wu—1 v =1 u'g,

and of p, by

(4.25) (1__2_>1’£_ 2_ 1586
v/vy, w'—1 v =1 ug,

Let
(4.26) R(t)=R—-L't .
Then

@2 L REREH-Z
U n
=(R'R/w —g*/n)—2¢ LR/’ + € LL't/uw’'
=(RRW — ) —2 3 2 @@ €@+ 33 A&

8

q, 9
e;w
=E,+3 %%,
=1 Y

from (3.6) and (3.7). Similarly, if

(4.28) ct)=C-M't,

(4.29) Lendyod)-L =g+ 3, 25
u n =1 U
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This shows that in actual computation of v, or v,, it is easier to use
(1/uw)R'(#)R(¢)—g*/n and (1/u)C"(£)C(£)—g*/n rather than E,, E,, e, g,,
Wsy* Ly ‘ .

It may be added here that, as E, and E, are respectively (o +
u'e?) and X(o*+ue?), with u—1—q, and w'—1—¢q, d.f., we can even use
E,./(u—1—q,) and E./(w'—1—gq.) for estimating o*+u's? and o*+us® re-
spectively. Further these estimates are always positive.

5. Effect of using estimates of p, and p. on &t

We shall assume that the estimates of p, and p, used, are of the
general form (4.16). The classical estimates are also of that form. We
have already observed that E,, E., E,, w, (s=1,2,---, q,) are all in-
dependently distributed, all z, (s=1, 2,---, g.) are also independent among
themselves and independent of E,, E,, E,, w, (l#s) but each =z, is cor-
related only with the corresponding w,. Hence

1 .
(5.1) E<?w,> = E{ L w}
" a'Er +Z bow:+0Ei
1

=E/{conditional expectation of (1/P,)w, when
E;, E,, w, l+#s are all fixed}

=F/{conditional expectation of an odd funection
of w,}

=0 as w, has a normal distribution with zero
mean

Similarly,

(.2) E(é

r

>x,=E’(conditional expectation of (1/P,)x,, when E,,

E,, w, are all fixed)

_ | Blelw)
P,
=E {5 Oy

1
= const tE’< )
constan P w.

r

=0 by (5.1).
Similarly E((1/P,)w,)=E((1/P.,)x,)=0 and hence, from (2.31),
(5-3) E{EQt(Pn Pc)_e-:t(pn pc)}
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—E(Z)
=%E[(;’1:—P%)w,]+#‘,’;clﬂ[<i— ;r>(w.—x.)]
1

e )

=0.

Thus
(5.4) E[gHP,, P)=E[&tp,, p.)]
=gt
and &#P,, P,) is an unbiased estimate of the treatment contrast &,
even if we substitute P,, P,, for p, and p,. Now &#p,, p.) is the un-

biased minimum variance estimator of &#(o,, o) and z, is a zero func-

tion and so, by Stein’s theorem [6]. &#(o,, p.) is uncorrelated with Z,
and hence

(5.5) V{&HUP,, P)}=V{&Hp., p)} +V(Z) .

The effect of substituting estimates of p, and p. is therefore to increase
the variance by V(Z,).

By an argument similar to the one used in (5.1) and (5.2), it can
be shown that

(5.6) cov (Z,, Z)=0, s+l

and hence, as &t are independently distributed (see (2.30)), &P,, P.)
(5.7) and &t(P,, P.) are uncorrelated for s+l

Now any treatment contrast h’'¢ can be expressed as a linear combina-
tion of the contrasts &f. Say

c=ht=3 kgt .

The minimum variance unbiased estimator of A't, when p,, p, are known
-1 _

is therefore 3 k.&:t(p,, p.)=7(p,, p.). When p,, p. are not known, and
=1

we substitute their estimates P,, P, (of the suitable form), we shall
obtain

(P, P,)
as an estimate of z; it will be unbiased for z, but

VIZ(P,, P)=VIz(o., p)I+ X KV(Z) .
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The second term in the right hand side represents the increase in the
variance due to the use of P,, P, instead of p, and p,.

6. Designs with property (A) and (B)

Zelen and Federer [7] introduced certain structural properties of
two-way designs. These are related to the incidence matrices L and
M corresponding to the rows and columns. Let vzﬁ a; and denote the

i=1
a;Xa; identity matrix by I, and E.., by J;. We then define
I, if 6,=0
6.1) D;’i:{
J i if 5‘=1 .

Then a two-way design is said to have property (A) if

6.2) LL'=§{ 5 h,(al,52,---,am)[D:-xD,"zx---xD,:m]}

8=0 \3;++e 43, =3

whe X denotes Kronecker product and h,(3,,- - -, 6,) are constants. This
can be written, alternatively, in short, as
(6.3) LL'=> h(3) [ x D}
L] i=1
where 8=(d,, d;,- -, 3,), each ;=0 or 1 and the summation in (6.3) is

over all the 2™ binary numbers 8. Similarly the design is said to have
property (B) if

(6.4) MM'=51 () ﬁxD{‘t

where h.(d) are some other constants. If the design has both the pro-
perties (A) and (B), LL’ and MM’ have the same eigenvectors. This

can be shown as below. Let y=(x, -, x.) Where each x:=0 or 1 only.
Define

1 if 7,=0

a;
(6.5) B}i=

Ii_—l—Jt if xi:]‘

(6.6) Bl=fr x Bl
=1

It is easy to show that B* independent, and’
6.7) B*Bv=0 if y#y
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i.e. columns of B* are orthogonal to those of B, if y+y.
From (6.3), it can be shown that

(6.8) LL/B'= 33 h,(0) ﬁ xDi‘i-jjl X Bl
=E,(y)B
where E,(y)= 3 h.(3) ﬁl (s, 04),
1 %=0,1, 3=0
(6.9) al 8)=10 n=1, &=1
Ca 1=0, ;=1

(6.8) (along with (6.7)), shows that, the columns from B* are eigenvectors

of LL’, and the corresponding eigenvalue is E,(x) (repeated as many

times, as the rank of B*). This is true for every binary number y.
This incidentally shows that

(6.10) MM'B* is also=FE.(x)B"
where
(6.11) E()=3h(®) [T aulx, ) -

This MM’ has also the same eigenvectors, viz columns of B*. This,
therefore, shows that for these designs, the results of this paper can
be applied. Most of the two-way designs occurring in practice, do have
properties (A) and (B) and as such satisfy the requirements of this
paper.

Of course, columns of B* are not unit and are not mutually ortho-
gonal but this can always be achieved by a process of orthogonalization.
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