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1. Introduction

The author [4] studied a strictly unbiased linearized maximum likeli-
hood estimate 8°=(#, &) (see also Plackett [9]) of the location and scale
parameters 6, and 6, based on a Type II doubly censored sample from
an absolutely continuous distribution satisfying certain general conditions.
This estimate is asymptotically normal and efficient (in the sense that
nV¥@°—8), where 8=(0,, 6,), converges in distribution to the bivariate
normal distribution 7(0, #2I°'), where 6;:I=06;%||L.(p,q)|, 7,8=1,2 is
the Fisher information matrix whose expression is given in condition
C, of [4]). An asymptotically unbiased linear estimate 8*= (&, ) related
to @ with simpler coefficients was also studied. #* was also obtained
by Bennett [1], Weiss [11] and Chernoff, et al. [5].

In Section 2 we show that n'%(6°—@%) converges in probability to 0.
By the Gauss-Markov theorem, one can obtain the best linear unbiased
estimate 6'=(6, 8,) of 6 (c.f. Lloyd [8]). The coefficients of such an
estimate involve means and covariances of standardized parameter-free
order statistics which in general are difficult to evaluate. We approxi-
mate the means and covariances by suitable functions of population
quantiles and denote the resulting estimate by 6*=(6F, ). This esti-
mate will be called the approximately best linear estimate. In Section
3 we show that ¢m(8*—6*) and 4/ n (6*—6*) converges in probability
to 0, where 6% =(6¥, 6¥') is a strictly unbiased estimate proposed by
Sérndal ([10], §1.4.2). An immediate consequence of this is that 6*
and 6* are asymptotically normal and efficient. In Section 4 we show
that the moments of 8°, 6%, 6* and 6* tend to the corresponding mo-
ments of their limiting normal distribution. In Section 5 we show that
the variances V(n"¥(#—¢.)) and V(n"%(#—8;)) tend to zero as the sample
size n tend to . Consequently, the best linear unbiased estimate 6’
is asymptotically normal and efficient.

* Supported by Grants-in-Aid, Department of University Affairs, Ontario, Canada.
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The notations used in this paper are almost exactly the same as
those in [4]. Let

(1) Yu<Yu1 <+ - <Yy

(u=[np], the greatest integer <np, v=[nq], 0<p<qg<1l) be a Type II
doubly censored sample of ordered observations corresponding to an or-
dered complete sample of size m from an absolutely continuous distri-
bution with distribution function F((y—6,)/6;) and probability density
function (1/8,)f((y—¥6.)/6;), where the location parameter ¢, and scale
parameter ¢, are unknowns to be estimated, and let z;=(y;—8,)/8;, 1=
u, u+1,---, v, be the standardized order statistics.

We assume that the distribution considered satisfies conditions C,,
C,, C,, C,, Cs; and C; given in [4]. To avoid repetition, they are not
listed here again. But whenever we say condition C; is satisfied, it
should be understood that we refer to condition C, of [4].

LEMMA. If
(2) f(x)>0 on {x|0<F(x)<1}

and C; is satisfied, for every fixed integer k, the left hand term in the
following equation eventually exists as n becomes large and

k
n*iE [ le (xij——&j)] =, .i, T 0(1) as n— oo

uniformly for mp=i,=<nq, where &,=F7'(i,/(n+1)) and p,,...;, s the
moment of order k of the k-variate normal distribution with mean (0,0,
-+, 0) and dispersion matrix

(| K@@y/m, ipn)[LF(F gD FE /e, 5, 5'=1,2,+-,k,
and
K(w, 2)=K(z, w)=w(1—2) if 0sw=Zz1 .

It should be noted that ¢; can equal ¢,, for some j#j. (2) is im-
plied by C,. Also by C, we see that f(x) is continuous. So

(3) F~Y(i/n)=&,+0(1/n) uniformly on np<i=<nq.

Consequently, for many situations about Taylor expansions appearing
later, one can replace F~'(i/n) by &, or vice versa without changing the
rates of convergence of remainders of the expansions considered.

2. The asymptotic equivalence of 6° and 6*

Let ¢, be the expected value Ex;, L, be the likelihood function of
(1) and (n'?6,)7'L,, r=1,2, be the terms linear in x,,---,x, in the
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Taylor expansions of n ‘% log L,[d08,, r=1,2 about x,=t,, t=u,u+1,
-+, v (c.f. [4], (5), (6)) when these two partial derivatives are considered
as functions the z,’s. Then after replacing z; by (y.—#8))/0,,

=' Sty | _
ZSu(t:)y.

0
in
0
n

(4) 8, nJ°67

where

e ~ 1254t Z6Su(t)
y=3  ad  wl=n) =] TSut) StSult)

Sut)=Si(t), S:u(t:)=Sut:) for t=u+1,u+2,---,v—1,
Su(ts)=—w—1)[fi/Fu— fiF1+8(.)
Su(t.)=(n—2)[f/[A—F,)+ f/Q—F.)']+S(t) ,
Su(t)=—u—1)[f/Futt.fi[F.—t. L2 Fll+Syt.)

Suults) = (=) [ £ (L= F) +t. £ (L= F)+t,£2(1— F.Y1+Su(t.)

with f,=f(t,), Fi=F(t), Si(t)=—d*{log f(t)}/dt’, Si(t)=d{—1—t(d log f(t)/
dt)}/dt. Let Lt,, r=1, 2, be obtained from Lj, by replacing J° by I
and the t’s in the coefficients of y, by the &/’s.

The linearized maximum likelihood estimate 6° and the related esti-
mate 6% are, respectively, obtained from solving the linearized equations
and the related equations

L,=0, r=1,2 and Lt.=0, r=1,2.
It can be derived that

(5) 0°=(nJ°)“| ISty 0t =(nI)™ 286y

28wty 28u()y:

In [4] we showed that, if C, to C; are satisfied, both n'%8°—8) and
nY%(@*—80) converge in distribution to the bivariate normal N(0, &I7)
and hence are asymptotically normal and efficient. The following the-
orem gives the relation between 8° and 6.

THEOREM 1. If C, to Cy are satisfied, n'*(6°—6*) converges in prob-
ability to 0.

ProoF. From [4] (p. 1880, lines 13-18) we note that as n— oo,
(6) S,(t)=8S,(&)+o(n™?), r=1, 2

uniformly for u<i<v. Replace each ¢, in J° by &, and denote it by J*.
Then by (6)
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(7) lim n!2(J°— J*)=0 ,

where 0 is a 2 by 2 zero matrix. But

(8) lim n/A(J*—I)=0

(c.f. (12) of [4]). So
(9) lim n*(J°—I)=0 .

n—oco

Finally we note that for each y,;, i=u+1,---,v—1, ¥.<¥:<¥,, and y,,
Y, converge in probability to 6,F~(p)+6,, 6.F '(q)+ 6,, respectively.
Then it follows from (5), (9) and (6) that for r=1, 2
w0 — ) =n""{[I+o(n )] '[|| S,(&) ||+ 0'(n™?)]
—IHS(E) Iy i=u,eee, v,
converge in probability to 0, where o(n""*) and o'(n""?) are, respectively,

2 by 2 and 2 by v—wu+1 matrices whose elements are of order o(n~'?)
uniformly as n— oo and y*=(¥,, -+, ¥,). The theorem is thus proved.

3. Asymptotic equivalence of 6 and 6*

The well known best linear unbiased estimate of @ based on (1) is
(10) 0'=(A"V'A)'A"V 'y
where A=||1¢|| is a (v—u+1) by 2 matrix with 17=||1,1,.--,1]|,
t"=||t,, tuss, -+, t, ||, and V=|| Cov (x;, z,)|| is the covariance matrix of
Ty <Ly < -+ <&, Since [F(2)(1—F(2,))/(f(2)f(2))]/92,, r=1,2 are
bounded on [F~Yp)—e, F~'(q)+¢] for some ¢>0, by the Lemma we have
(11) A=A*+0"(n""?) and V=V*+0"(1/n)

uniformly for np<1<, j<nq,

where .

A*=||le”7 eTzllsu!$u+ly”',$v”9
V¥=(1/n) || [K(t/(n+1), j/(n+1))/[f(E)S(EDT], and o(1/n) a v—p+1 by
v—p+1 matrix whose elements are of order o(1/n) uniformly as n— oo.
Let

0*=(A*T V*_‘A*)"‘A*T V*_ly
and call it the approximately best linear estimate.

THEOREM 2. If C, to Cy are satisfied, n'/*(6*—6*) converges in prob-
ability to 0.
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A consequence of Theorem 2 is that 6* is asymptotically normal
and efficient.

PROOF OF THEOREM 2. Similar to the proof of Theorem 1, it is
sufficient to show that

(12) (A* V¥ A¥) [ 1=o(nV?) ,

and

Slu(eu)) ct %y Slu(Ev)
SZu(eu)’ tt Y S2v(5v)

uniformly for np<i<nq.

(13) A¥TV*T—

:ol(n—l/Z)

Let a*=(a¥, a¥,,- -, a¥) be the second row of A*"V*~'. Now we pro-
ceed to show that

(14) a* - “ S2u($u)l Si,u+l(5u+l)i ] Szu(év) ” ___olll(n—l/Z)

uniformly for np<i<nq, where o"(n""?) is a 1 by v—u+1 matrix
whose elements are of order o(n~'%) as m—oo. It may be derived that
(c.f. Hammersly and Morton [7])

¢, d, O o ---0
d, Cutt du+1 0 «-:0

(nV*)“: 0 du+l Cut2 du+2 -0

--------------------------

0 0 ceveenes dy_1 €,

where ¢, = (@101 — i bipy)/[(@:Di 11— @iy ib) (@ioibi—ad; )], di=1/(ab;1—
Qiiby), a;=(t/(n+1))/f(&), bi=(1—1/(n+1))/f(&), =%, u+1,---,v, Q1=
0, ay.,,=1, b,_,=1, b,,,=0. It may be checked from C, and C; that

d'(xf)/dF*,  dX=zf)AF*,  dS(i)/dt
are bounded on the interval [F~(p)—e, F~(q)+¢] for some ¢>0. Since
£,<8,<8,, i=u+1,---,v—1, limé&,=F"(p), and lim¢{,=F"Y(q), & Dbe-

long to this interval for sufficiently large n. After simple manipulation
we have uniformly for u<i<v

a;k = S2i($i) + 0(1/%) .

The proofs for the first row of (13) and for (12) follow from similar
arguments.

Our proof of Theorem 2 is hinted by Plackett’s expositary paper [9].
However, our proof is more rigorous, and in addition, in Theorem 3 we
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shall show that the moments of #* converge to those of its limiting
normal distribution. Approximation to the best linear unbiased estimate
by an estimate somehow similar to #* was also considered by Blom [2]
under different conditions.

Sidrndal ([10], p. 18), proposed the linear estimate

OF=(AT V¥ A) ATV 'y

which is strictly unbiased. Since t,=¢4+0(n""?) uniformly for u<i<w,
it is clear that n'*(@*—6*') converges in probability to 0 and hence 6*
is asymptotically normal and efficient.

4. The convergence of moments of 8, 6, 6* and 6*

THEOREM 3. Let 6 be any one of 6°, 6% 6% and 6¥. If C, to C;,
are satisfied, then for any fized non-negative integers k and k', the left
hand term of the following equation eventually exists whem m becomes
large and we have

E{[n(0,— ) [n*(6,— )1} =pulle, K)+o(1)  as m—oo ,

where p(k, k') is the (k, k')th moment of the bivariate normal distribution
N, &17).
PROOF. Let us demonstrate that
(18)  E[n"(61—6,)]'=06Ix(p, @)/[Lu(p, 9)Lo(p, ¢)— Li(p, 9)]+0(1)
as n—oo ,
We know from [4] (p. 1881) that

no2 Lo

-1
nl/z(oo —0)=6,J° n VALY

converges in distribution to N(0, #2I!). Then by the Lemma
(16)  E[@—6)p
=BIIS—Ti* {0 53 [KGIn-+1), G+ DI EDFEN]
- ESUE) —TASuEIN IS (E) —~JISu(E ]} +o()  as n—soo,

where J,=J.(n) and J¥=JX(n), r,3=1,2. Then following the manipu-
lations similar to those given in p. 65 of [5], it can be shown that (15)
holds. The remaining part of the theorem may be proved by analogous
arguments. It should be noted that for values of (k, k') other than
(1, 0), (0,1), (2,0), (0,2), (1,1), complicated manipulations may be need-
ed in the proof of the theorem.
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General convergence of moments of linear combinations of order
statistics were also considered by Bickel [1] (Theorem 4.2).

5. The asymptotic properties of the best linear unbiased estimate 6’

THEOREM 4. If C, to Cs are satisfied, then

lim || Cov (n}(62— 67), (62— 6) ||=]|g g . rs=1,2.

So n'4(@"—80') converges in probability to 0 and hence 8’ is asymp-
totically normal and efficient. Although many asymptotically normal
and efficient linear estimates have been proposed, that the best linear
unbiased estimate, which has the smallest variance in the class of all
linear unbiased estimates for any sample size, has such optimal asymp-
totic properties seems has not been proved before.

PrOOF OF THEOREM 4. Let us demonstrate that
17) lim V(n'%(6—6))=0,
where lim=lim. Let I-'=|I"(p,q)|, r s=1,2. -Since I"@/n is the
Cramér-Rao il;:;zer bound and V(#)) <V (&),
I"#;=lim V(n'*¢))=1im V(n'*6}) .
So it is sufficient to show that

(18) lim 2 Cov (0262, n'2¢))=2I"¢; .

Let g,=n"'6%(I"9 log L,[36,+I"3 log L,[36,). By the regularity conditions
C; to C, we have for r,s=1, 2

(19) Edlog L,[06,=0 ,

(20) lim n™'E((d log L,/dd,)(d log L,[38,))=1,.,6;*
and since E0°=FE60'=6

(21) 0E#;/30,=0E0;/66,= E(6,(d log L,/38,))=1 or 0

according to r=s or r#s.

(19) (as well (21)) and (20), are, respectively, extensions to two-param-
eter case of (3.3.1) and (3.3) of [6]. It follows from (19) and (21) that

(22) 2 Cov (n'?6}, n'*0))—21"6:
=nE(6—6,)(0'—6,—g,)) +nE(0,—0,)(#—6,—g.)) .

Using Schwartz inequality and (19) to (21) we have
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lim | nE (62— 6) (¢ —6,—g,) |*
<lim [(V(n"*&))(V(n?8')+ V (n'g,) — 2nE(6/g.))] =0 .

Similarly it can be shown that the second right-hand term tends to 0 and
hence (18) holds. Following similar arguments we have

lim V(n'%(6;—6;))=0
and then by the Schwartz inequality
lim Cov (nV¥(6,—#.), n"(6—8,))=0 .

6. Remarks

Theorems 1, 2, 3 and 4 may be extended to Type II multiply cen-
sored samples in which only the observations with ranks lying between
and including [np;] and [nq;] are available, where 0<p,<q;<P:<q:< -
<p<q:<1, k a fixed integer.
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