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1. Summary

Methods are developed for estimating the mean of a normal popu-
lation utilising the information available from two samples by properly
modifying the continuous weight function approach. The resulting esti-
mators are shown to be better in some cases than the ones obtained
using the test estimation procedure due to Bancroft [2], [3] and Berkson
[4]. The method of comparison is based on the concept of premium and
protection introduced by Anscombe [1].

2. Introduction

The following problem is of frequent occurrence in statistical prac-
tice. If we have a random sample of n measurements, =z, x;,: -, Z,,
from a certain normal population N(g, ¢) made by an experienced ob-
server, and a second similar sample of size m, ¥, ¥:," -, ¥n, taken and
recorded by a less experienced observer, how shall we estimate g by
utilizing the information contained in both the samples? The procedure
that is often followed in the above as well as several similar situations
is to estimate the mean by pooling the estimates based on the separate
samples. In the sequel we shall refer to this as the AP procedure
(always pool). Thus according to the AP procedure, p is estimated by

@.1) A=TE+my
nt+m

where

@.2) =L,
n 1

and

2.3) g=-1 51y,
m 1
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But, considering that the second observer is less experienced, it is ob-
viously more realistic to take into account in estimating p the possibility
that his sample comes from a ‘similar’ but different normal population.
For example, it could well be that ¥, ¥,,- -+, ¥, is a random sample from
N(u+as, *) where a is an unknown constant, or that it is a sample
from N(g, xé®) where « is unknown. If we allow for this possibility then
the following methods for estimating p should also be considered as pos-
sible alternatives to the AP procedures. (1) The TE procedure. Use
an appropriate statistic to test whether the two samples come from the
same population, and use this test as a criterion in making the decision
as to whether to pool the two means or not. If the test diseriminates
properly between cases where pooling should or should not be made, the
preliminary test of significance criterion will utilize the extra m obser-
vations from the second sample whenever permissible. This procedure
is due to Bancroft ([2], [3]) and Berkson [4]; we shall refer to it in this
paper as the TE procedure (test estimation). (2) The CW procedure.
Always pool the two sample means Z and ¥ using continuous weights as
opposed to discrete weights used in the AP procedure. According to
this approach, the suggested estimator of p is of the form ¢(R)x+[1—
#(R)]y where R is an appropriate test statistic for deciding whether the
two samples come from the same population or not, and ¢(R) is a con-
tinuous function of R. This procedure was suggested by Huntsberger
[7], and has been successfully used by Mehta [9] and Mehta and Gurland
[10] in different situations. We will call this the CW procedure (con-
tinuous weight).

It is clear that even though A, as given by (2.1), is the best un-
biased estimator of p if the two samples happen to come from the same
population, the estimators given by the TE or CW procedure have the
advantage of guarding against possible loss in efficiency when, in fact,
the populations are different. In this paper we shall study the relative
merits of these two procedures as compared to the AP procedure. An
appropriate criterion for comparison of the two procedures can be based
on the concept of premium and protection introduced by Anscombe [1].
For illustration, consider the case when z,, ,,-- -, x, come from N(g, ¢*)
and ¥, ¥, ", Yn is a sample from N(g+as, o’) where a is unknown.
Let U be an estimator of p based on either the TE or the CW procedure,
and let A be the always pool estimator given by (2.1). Since A is the
best unbiased estimator of x if @ happens to be zero (the null case),
we suffer a loss by using U when a=0. A convenient measure of this
loss is given by the premium (in analogy with a fire insurance policy)
of U defined by

(2.9 Premium (U)=-MSE (MUS3E_(IYI4?E (4)

Il
o
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where MSE stands for mean squared error. On the other hand, we
experience a gain in the use of U over that of A when a is different
from zero. This gain can be measured by the protection of U defined
by

MSE (A4)—MSE (U)
MSE (4) st

(2.5) Protection (U)=

It is now clear how two estimators 7T and C, given respectively by
the TE and CW procedure, can be compared with respect to A. Choose
the variables involved in T and C so that they have a common preas-
signed premium. For this fixed premium base the choice on the be-
havior of the protections afforded by them as functions of the nuisance
parameter. We shall follow this technique throughout this paper.

In Section 3 we consider the case where the first population is
N(y,d) and the second is N(p+as, *) where ¢ is known. Section 4
deals with the same situation with the added assumption that ¢* is un-
known. Finally, in Section 5 we present the case where both popula-
tions have the same mean but different unknown variances. In each
case we have fixed the premium at .05 and studied the protection af-
forded for various values of the nuisance parameter and the sample
sizes.

In this section we will assume that z,, ,,---, 2, is a sample from
N(g, ) and %, ¥, -+, Y» is a sample from N(u+ag, ¢*). It is required
to estimate p¢ when ¢ is known while a is unknown.

The estimator T, derived using the TE procedure is given by [8]

T if |z|=¢.0,
3.1 T,= = =
3.1) Tl A=TEEMY i g)<t,
n+m
where
(3.2) z=2—yY, a=d(l/n+1/m)

and ¢, is the solution of 1—®&(§,)=a/2 where @ denotes the cumulative
distribution function of the standardized normal variate.

Letting =—a+ (nm/n+m) and ¢ denote the density of the stand-
ard normal variate, it is seen that

(3.3) E(T1)=;t+\/MTMU{5[¢(5+E,,)—!D(B—&.,)]+¢(5+$..)—¢(5—§n)}
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and

aim {o’ SH:: H(u)du— S:i: u’qﬁ(u)du} .

(3.4) MSE (To=%+W "

We can now compute the premium and protection of T, using (3.4) for
various values of £,. It is seen that the premium equals 0.05 when &,=
2.678. For this value of ¢, the protection of T is computed for various
values of a and given in Table 1. We have chosen n=8 and m=6.

Table 1. Protection afforded by 71 when Premium (71)=0.05,
n=8 and m=6

a Protection (71) a Protection (71)
£,=2.6780 £.=2.6780
+ 0.02 —0.050 + 1.20 0.177
+ 0.04 —0.050 + 1.49 0.327
+ 0.06 —0.051 + 1.60 0.482
+ 0.08 —0.051 + 1.80 0.621
+ 0.20 —0.058 + 2.00 0.732
+ 0.40 —0.071 + 4.00 0.959
+ 0.60 —0.066 .+ 6.00 0.981
+ 0.80 —0.027 + 8.00 0.989
+ 1.00 0.055 +10.0 0.993

We now turn to the derivation of the estimator C, given by the
CW procedure. Let us write our estimator in the following initial form

(3.5) U=aZ+(1—a)y

where = and ¥ are given by (2.2) and (2.3) respectively, and a is to be
suitably selected. We determine a by requiring that it minimizes the
MSE of C which is given by

(8.6) MSE (C)=d*(a*/n)+(1—a)’A/m+a?) .
This is minimized with respect to a when
3.7 a=1/m+a?)/1/n+1/m+a?)

which is a function of a*—an unknown quantity. In order to use C in
any given situation a® must be estimated.

Now (¥—2z)'~d(1/n+1/m)X; .2 which is a weighted non-central chi-
square with non-centrality parameter a®. Since

(3.8) E[@-2y]1=¢1/n+1/m)(1+a’)

it seems reasonable to estimate a’ by
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(3.9) a'=(d/o") (y—%)'+c

where ¢ and d are constants and will eventually be determined so as to
give suitable properties to the final estimator C,. If we substitute in
(3.7) the estimate of a* given by (8.9), and insert the resulting expres-
sion for a in (3.4) we obtain C in the form

. meG—3)
(8.10) OS5 S m)+ onm T+ dnmg—ay

To facilitate derivations of the first two moments of our estimator we
have slightly modified C without any loss of generality and obtain the
final estimator C, according to the CW procedure as

ma'(y —7%)

3.11 =4 _O\Y—L)
®10 = L MG

where L=cd(n+m); M=dnm. W can obtain the following expressions
for E (C,) and MSE (C,) the details of which are omitted.

_ avnm?® L nm
(3.12) E (Cl)—#+m Jz(y: W' M)
(3.13) MSE (C)= 20°d (n+m)—d*m(1+4d) vm o
2d'n(n+m) d*v/ 8nr(n+m)
. {(1+4d) [e(n+m)+dnma?]+d(n+m)
dn(n+m)
. e(n+m) nm a(l+4d) d_
Ji ( dnm ' 2(n+m)’ a) + n  da
. c(n+m) nm
d )j-

’ ’ a
dnm  2(n+m)

The functions J; and J, are defined by :

Ji(a, B, 7)= Sw __]i;Fe—ﬁ(c—rﬂdt
=\ t —pt—p)?
Jz(a, B, T)——S_w me dt .

Using the auxiliary integrals

o e-—nv’
£ _4d =0,1,2,-
o o )

Tia, §)=|

it can be shown that
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[ in _
Ha 5. 1)=20 YT 5 PO, ).

The evaluation of J; can now be completed by noting that

e f

7 _ 2
ol B)= @n—-1)p " 2n—1

jn—l(a’ ,B) ('n"—‘l, 2, .o .)

and that Jy(a, B) is essentially the standard normal integral. In order
to evaluate J,, we simply use the relation:

1 d

Jia, B, )= 28 dr

Ja, B, 1)+ 1die, B, 7) -

Since the integrand in (3.12) is an odd function of ¢ when a=0, we see
that C, is unbiased for g in the null case, i.e., when a=0. It can also
be verified that MSE (C,) is symmetric about the origin with respect
to a.

Using (3.13) we can now easily calculate the premium and protec-
tion of C,. As in the case of T,, we shall fix the premium of C, at
0.05. For a given m and m, there are several possible choices of ¢
and d values which give a premium of 0.05. The behavior of the pro-

Table 2. Comparison of the protection afforded by Ci for several values of
¢ and d giving Premium (C1)=0.05 when #=8 and m=6

Protection (C)

¢=0.7000 | ¢=0.8000 | ¢=0.9000 | ¢=1.000 ¢=1.1000 | ¢=1.2000
d=0.1600 | d=0.1570 | d=0.1375 | d=0.1100 | d=0.0800 | d=0.0484

+ 0.02 —0.050 —0.050 —0.050 —0.050 —0.050 —0.050
+ 0.04 —0.050 —0.049 —0.049 —0.049 —0.049 —0.049
+ 0.06 —0.050 —0.048 |. —0.048 —0.047 —0.046 —0.046
+ 0.08 —0.049 —0.047 —0.046 —0.044 —0.044 —0.042
+ 0.20 —0.043 —0.031 —0.023 —0.017 —0.012 —0.008
+ 0.40 —0.011 0.024 0.045 0.061 0.074 0.085
+ 0.60 0.057 0.106 0.135 0.155 0.171 0.183
+ 0.80 0.153 0.205 0.233 0.251 0.263 0.269
+ 1.00 0.265 0.312 0.334 0.344 0.348 0.344
+ 1.20 0.379 0.416 0.430 0.432 0.427 0.411
+ 1.40 0.484 0.513 0.519 0.513 0.499 0.471
+ 1.60 0.577 0.597 0.598 0.586 0.565 0.527
+ 1.80 0.655 0.669 0.655 0.650 0.624 0.578
+ 2.00 0.719 0.728 0.722 0.705 0.676 0.625.
+ 4.00 0.944 0.943 0.944 0.934 0.922 0.890
+ 6.00 0.978 0.978 0.978 0.976 0.972 0.960
+ 8.00 0.988 0.988 0.988 0.988 0.986 0.982

+10.00 0.993 0.993 0.993 0.992 0.992 0.990
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tection of C, for various such solutions is presented in Table 2 for m =8
and n=6. The results of Table 2 indicate that by increasing ¢ we can
obtain increased protection for C, in an a-interval around the origin.
In so doing, however, we pay a price by decreasing the protection ob-
tained for values of a lying outside this interval. The choice of the
solution thus depends to a large extent on the discretion of the statistican
and any idea he might have regarding the possible range for the nui-
sance parameter a.

With the help of Tables 1 and 2 we can now compare the protec-
tion afforded by T, with that of C, for various values of ¢ and d. Con-
fining attention to the case when ¢=0.8000 and d=0.1570, we note that
C, affords much better protection than T; for values of a in the interval
(—2, 2), i.e., when the second population has a mean value lying within
2¢ limits of the first one. This is obviously the case of utmost interest
to us since deviations by any greater amount are much less likely to oc-
cur in practice. It is also clear that, for values of a larger in absolute
value than 2, the protection afforded by C;, even though less than that
of T,, is not significantly different from it. We could even safely as-
sume that they are equal. Thus we can conclude that when a lies in
the interval (—1,1) the analysis comes out overwhelmingly in favour

Table 3. Comparison of the protection afforded by Ci for several values of
m and d giving Premium (C;)=0.05 when #=12 and ¢=0.9000

Protection (C1)
“ m=4 m=6 m=8 m=10
d=0.2551 d=0.1828 d=0.1483 d=0.1276
+ 0.02 —0.050 —0.050 —0.050 —0.049
+ 0.04 —0.049 —0.049 —0.048 —0.048
+ 0.06 —0.049 —0.048 —0.047 —0.046
+ 0.08 —0.047 —0.046 —0.044 —0.042
+ 0.20 —0.034 —0.024 —0.015 —0.006
+ 0.40 0.010 0.045 0.072 0.093
+ 0.60 0.080 0.142 0.185 0.213
+ 0.80 0.168 0.253 0.305 0.337
+ 1.00 0.265 0.365 0.422 0.455
+ 1.20 0.362 0.471 0.528 0.561
+ 1.40 0.454 0.564 0.619 0.650
+ 1.60 0.537 0.643 0.694 0.723
+ 1.80 0.608 0.708 0.754 0.780
+ 2.00 0.669 0.760 0.802 0.824
+ 4.00 0.913 0.946 0.960 0.966
+ 6.00 0.962 0.978 0.984 0.987
+ 8.00 0.979 0.988 0.991 0.993
+10.00 0.986 0.992 0.994 0.996
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of C; (note that Protection (7})<0 in this interval), that when 1<a<2
we should still favour C, over T, (Protection (C,) is almost twice Pro-
tection (T)) in this interval), and that for all other values of a the two
protections are practically the same.

Note that even though the above analysis is based on a common
premium level of 0.05 there is no reason to believe that the basic con-
clusions would be any different if the premium were fixed at 0.01 say.
The same comment holds good regarding the sizes of the samples, n and
m. However, to gain some idea about the behaviour of C, for varying
sample sizes, we have calculated the protection afforded by C, for vari-
ous values of m, when n=12, Premium (C,)=0.05 and ¢ is fixed at
0.9000. The results of this calculation, presented in Table 3, indicate
that the protection of C; can be uniformly increased as m increases.

4.

In this section we consider the same basic situation as in Section 3
except that we relax the assumption made there that ¢’ is known. Thus
now we are interested in estimating ¢ when ¢ is unknown.

For this case the estimator T, derived using the TE prcedure is
given by [6].

x if |t|=t.
n+m

where ¢, is the (1—a/2)100% point of the ¢ variate with n+m—2 d.f.
It can be shown [6] that for n+m even and >4 we have

42)  E(h)=a \/ (n+m) \/t’+n+m 2

- exp {—(a*/2)[nm[n+m][n+m—2/t;+n+m—2]}
(n+m—4)/2 _2 1 ;i+1
TR (MR ) ]

if |t]|<t.

i=0 \ 2t,’, 7:!

and
(4.3) MSE (T))=2 1+ f(@)]
where

_ —(a@*2)[nm/n+m][n+m—2]
@ f@=T \/t,+n+m 5 e | sl |

.. (n+m—4)/2 ,n+m_2 l nm , L
{ = < 2t )i![za ntm ﬂ"“]}
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where

(4.5) =2 (% )otmoas
j=o \J

t;
ti+n+m—2

o

p =a\/ nm $?
: n+m t24+n+m—2

and p} is the jth moment of a standard normal variate.

The premium and protection of T, with respect to A can now be
calculated using the above formulas. As in the previous section we
have fixed the premium at 0.05 and chosen n=8 and m=6. For these
values we have computed Protection (T;) at different a values and the

results are given in Table 4.

Table 4. Protection afforded by 73 when Premium (73)=0.05,

n=8 and m==6

a Protection (T3) a Protection (7%)
t.=3.056 t.=3.056
+ 0.02 —0.050 + 1.20 0.137
+ 0.04 —0.050 + 1.40 0.250
+ 0.06 —0.050 + 1.60 0.378
+ 0.08 —0.051 + 1.80 0.507
+ 0.20 —0.054 + 2.00 0.625
+ 0.40 —0.057 + 4.00 0.958
+ 0.60 —0.047 + 6.00 0.981
+ 0.80 —0.014 + 8.00 0.989
+ 1.00 . 0.047 +10.00 0.993

219

We now turn to the derivation of the estimator C, following the
CW procedure. It is easily seen that C, is of the same form as C, given
by (8.11) except that ¢* is unknown now and has to be estimated. We

use s’ to estimate ¢ where

(4.6) g m—1)si+(m—1)s;

n+m—2
ahd
(n—l)sf:"; (—F)
(m—D)s=31 (=7 -

C, can now be given as
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= +. ms(y—7x)
es'(m+mn)+dmn(y—zx)*

The following expressions can be obtained :

(4.8)  E(C)=p+mas(n+m—2)*m1 exp {__—mm’ n

2(m+mn)
(49)  MSE(C)=Z+o(n+m—2)n+mr exp [ —mne’ ]
n 2(m—+n)
2”6 n_l_m n
where
_g(ntm 3
II_J( 2 2)
L=J<n+m,§>+ mna’ J<n+m’§>
2 "2/ m+n 2 2

2 5
I:J<n+m+2,_‘al> mna J<m+n+2’__>
’ 2 2) T mtn 2 2

Table 5. Comparison of the protection afforded by C; for several values of
¢ and d giving Premium (C;3)=0.05 when #=8 and m=6

Protection (Cs)
“ ¢=0.7000 | ¢=0.800 | ¢=0.900 | ¢=1.000 | ¢=1.000 | ¢=1.2000
d=0.1184 | d=0.1284 | d=0.1142 | d=0.0922 | d=0.0670 | d—=0.0404
+0.02 | —0.050 | —0.050 | —0.050 | —0.050 | —0.050 | —0.050
+0.04 | —0.050 | —0.049 | —0.049 | —0.049 | —0.048 | —0.048
+£0.06 | —0.050 | —0.048 | —0.048 | —0.047 | —0.046 | —0.046
+0.08 | —0.050 | —0.047 | —0.046 | —0.045 | —0.044 | —0.043
+0.20 | —0.050 | —0.034 | —0.025 | —0.018 | —0.013 | —0.008
+ 0.40 | —0.034 0.014 0.039 0.057 0.072 0.084
+ 0.60 0.016 0.089 0.124 0.148 0.166 0.180
+ 0.80 0.100 0.182 0.218 0.240 0.256 0.265
+ 1.00 0.204 0.284 0.314 0.330 0.338 0.338
+ 1.20 0.314 0.385 0.447 0.415 0.414 0.403
+ 1.40 0.419 0.480 0.494 0.494 0.484 0.461
+ 1.60 0.515 0.565 0.572 0.565 0.548 0.514
+ 1.80 0.598 0.638 0.647 0.629 0.605 0.564
+ 2.00 0.667 0.700 0.698 0.683 0.657 0.609
+ 4.00 0.933 0.937 0.934 0.926 0.910 0.874
+ 6.00 0.975 0.976 0.975 0.973 0.968 0.952
+ 8.00 0.987 0.988 0.987 0.986 0.984 0.978
+10.00 0.992 0.992 0.992 0.992 0.991 0.988
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]

mna’
exp { 4d(m+n)t+2(m+n) } d

o [2e(m+n)t+m+n—2*[2d(m+n)t+1]"

J(k, 1) =S

It is easily seen from the definition of J(k,l) that C, is unbiased
for g in the null case, and that MSE (C,) is symmetric about the origin
with respect to a.

In Table 5 we have presented the protection of C, with respect to
A for m=8, n=6 and Premium (C;)=0.05 corresponding to several pos-
sible solutions in terms of ¢ and d. Table 6 gives the protection of C,
for various values of m, when n=12, Premium (C;)=0.05 and c is fixed
at 0.9000. These tables are analogous respectively to Tables 2 and 3 of
the previous section. The comparison of T, and C, and the behavior of
C, are similar to the corresponding aspects of 7} and C; given in Section 3.

Table 6. Comparison of the protection afforded by Ci for several values of
giving Premium (C3)=0.05 when ¢=0.8

Protection (Cs)
¢ m=4 m=6 m=8 m=10
d=0.1827 d=0.1492 d=0.1492 d=0.1296
+ 0.02 —0.050 —0.050 —0.049 —0.049
+ 0.04 —0.049 —0.049 —0.049 —0.049
+ 0.06 —0.049 —0.048 —0.048 —0.047
+ 0.08 —0.048 —0.047 —0.046 —0.046
+ 0.20 —0.037 —0.031 —0.026 —0.023
+ 0.40 —0.002 0.026 0.043 0.054
+ 0.60 —0.066 0.115 0.147 0.167
+ 0.80 0.150 0.224 0.268 0.295
+ 1.00 0.247 0.339 0.392 0.423
+ 1.20 0.346 0.450 0.505 0.538
+ 1.40 0.440 0.548 0.603 0.634
+ 1.60 0.526 0.631 0.682 0.712
+ 1.80 0.600 0.699 0.746 0.772
+ 2.00 0.662 0.753 0.795 0.819
+ 4.00 0.912 0.945 0.959 0.966
+ 6.00 0.962 0.977 0.984 0.987
+ 8.00 0.979 0.988 0.991 0.993
+10.00 0.987 0.992 0.994 0.996

5.

In this section we assume that z,, «,,- -, 2, are from N(g, ¢’), and
Yi» Yoo+ *» Ym are from N(g, ko®) where o* and k (=1) are unknown. The
problem is to estimate p.
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The TE procedure estimator T; of x is given by

z if F=>F,
(5.1) T;= =
T retmy ¢ peF
n+m
where F'=sj/s} with s} and s} given by (4.6), and F, is the (1—a)100%
point of an F variate with m—1 and n—1 degrees of freedom. The
following identities can be easily proved:

(5.2) E(Ty=¢

(5.3) MSE (T)=o[ -4 pp< )+ Lppz ).

L (n+m) n
The probabilities in the above expression can be expressed in terms of
Incomplete Beta Functions. It is seen that when F,=3.5, T} attains the
premium of 0.05 when n=8 and m=6. For these choices of F,, n and
m we have obtained the protection afforded by 7, with respect to A for
k=2(1)10. These are given in Table 7. Note that the null case corre-
sponds to k=1.

Table 7. Protections afforded by 73 and C; when
Premium (7s)=Premium (C3)=0.05

(n=8, m=6)
k Protection (T3) Protection (Cs)
(F.=3.5) (c=1.32, d=1.326)
2 —0.054 0.069
3 0.024 0.195
4 0.127 0.298
5 0.228 0.381
6 0.316 0.447
7 0.392 0.502
8 0.456 0.547
9 0.509 0.585
10 0.555 0.618

The derivation of the CW procedure estimatdr C, is similar to that
of C; and C,. It is of the form [9]

_ (c+F)z+dy
6.4 T ctd+F)

where F'=sj/s}. The derivation of the first two moments of C; is rather
straightforward, and we get

(5.5) E(G)=p
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and

_ I'((m+m—2)/2) _ 1\m-1y2 __1\]t—12
(5.6)  MSE(C)=c o Fttm— gy D" k=1l !

(2B

where

67 Di={ () ek — 1)+ (m— L)a] >

ctd+a
and

oo m(m—ﬂ)/z —(n+m—-2)/2
68 D= oy e

Using the above formulas we can now compute the premium and
protection of our estimator C, as functions of k. We have chosen ¢=
1.82 and d=1.326 so that the premium is 0.05, and the protection is
nearly optimum. Sample sizes n and m are respectively 8 and 6 as in
the case of T;. For this choice of the constants, Protection (C;) is given
in Table 7 for £=2(1)10.

The conclusions to be drawn from the table are obvious. The pro-
tection afforded by our estimator C, against always pooling is uniformly
higher than that of Tj.

6. Concluding remarks

In all the cases considered in this paper we have shown that the
estimators (C,, C; and Cj), constructed by us by properly modifying the
continuous weight function approach, are much better, when a is not
too small, than the ones (T,, T, and T;) obtained via the test estimation
approach in the sense of buying higher protections with respect to the
always pool estimator A.

The extension of these ideas to the estimation of the variance is
considered in a forthcoming publication.
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