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Summary

The use of a multidimensional extension of the minimum final pre-
diction error (FPE) criterion which was originally developed for the
decision of the order of one-dimensional autoregressive process [1] is
discussed from the standpoint of controller design. It is shown by
numerical examples that the criterion will also be useful for the deci-
sion of inclusion or exclusion of a variable into the model. Practical
utility of the procedure was verified in the real controller design process
of cement rotary kilns.

Introduction

In a practical situation of the autoregressive model fitting the order
of the model is not generally known. The order may not be finite and
rather will only be an artificial variable for the purpose of developping
an approximation to the real world. Thus the decision of the order
forms a crucial point in the autoregressive model fitting and any fitting
procedure which lacks a description of this point may not be considered
to be very efficient for practical applications. The situation is the same
for any fitting procedure of finite parameter models and remains at
present as a most challenging subject of study which deeply concerns
with the practical utility of the whole statistical theories.

The natural approach to this type of problem will be to estimate
the possible risk of fitting each model and adopt the one which gives
the minimum of the estimates. The main problem in this approach is
the choice of the risk function. In recent papers by the present author
[1], [2] it has been demonstrated that the use of FPE (final prediction
error), which is the mean square one-step prediction error when the set
of the fitted coefficients is applied to another independent realization of
the process, produces quite reasonable results. This fact is also con-
firmed by the results of applications of the procedure to many practical
data.

163



164 HIROTUGU AKAIKE

Although, from the standpoint of evaluation of the linear transfor-
mation of the process under quadratic error criterion, the ultimate pur-
pose of the model fitting may always be considered to be the identifica-
tion of the spectral characteristics of the process the controller design
of the process poses various interesting problems for the model fitting.
As will be described briefly in the next section, the autoregressive re-
presentation of a multivariate stationary process can directly serve as
a starting point of the controller design.

In a real situation of controlling a complex and noisy system another
very important problem is the decision on the inclusion or exclusion of
a variable into the model. Thus, besides the decision of the order, a
procedure must be developed for the decision of the dimensionality of the
multivariate vector process.

Extensions of the definition of FPE to multidimensional case have
been proposed in [3] and the use of the estimate of generalized variance
of the one step prediction error is suggested. Taking into account that
this is the only quantity which appears in the maximum likelihood in
Gaussian case it seems that this choice is a reasonable one for the pur-
pose of the determination of the spectral characteristics of the process.
In the case of controller design we are only interested in the predict-
ability by the model of the system output, since the system input will
eventually be under our complete control. This consideration suggests
the replacement of the generalized variance by that of the system output
variables. This is the procedure to be proposed in the present paper and
this definition of the criterion naturally suggests an extension of its use
for the purpose of inclusion and exclusion of the input variables. Once
the extension of the decision procedure to the selection of input variables
is admitted the procedure can also be utilized for the decision of the
inclusion and exclusion of the output variables. Naturally the procedure
of selecting variables excludes a complete theoretical analysis at present
and it must be used with a sound scientific reasoning. The utility of
the procedure is illustrated by using real and artificial data.

1. Use of autoregressive models for controller design

As a preliminary for the discussions in the following sections the
use of the multivariate autoregressive model for the controller design
under the quadratic criterion is briefly described in this section. We
assume that the r-dimensional vector of the system output variables and
the l-dimensional vector of the system input variables at time n are re-
presented by x, and y,, respectively. We will call the components of z,
controlled variables and those of y, manipulated variables. The (74I)-
dimensional vector X, is defined by
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1
1.1) x,=| "1,
Yn |}

For the sake of simplicity it is assumed that z, has a zero mean vector.
We assume that X, admits the following autoregressive representation :

(1.2) X,= 3 AX,tU,
where A,, is an (r+1)X(r+1) matrix and U, is a random (r+Il)X1 vec-
tor satisfying the relations
EU,=0 (zero vector)
1.3) EU.X!_,.=0 (zero matrix) for m=1
EU,U,=6..S,

where 6,,=1 (n=m), =0 (n#m) and S is a positive definite (r+1)X
(r+1) matrix and the symbol  denotes the transpose. From the repre-
sentation (1.2) we get the following representation of controlled vari-
ables, which will be used for the controller design:

M M
(1'4) Tn= E a/mxn—m"l" 2 bmyn—m+wn ’
m=1 m=1

where a,, b, and w, are given by the relations

—r— 1l

A= ~a,,,, b,,,]
| * *

— g

(1.5)

U=

.__._.._i_.
r 1
x 8

3
———

where * denotes the irrelevant quantities for the present representation.
For the purpose of controller design, (1.4) is transformed into the
following state space representation [10]:

(1.6) Z,=07Z, .+I'Y,_ +W,,
where
-1
[
z,=1 %

2D

n

——
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A simple controller design under quadratic performance criterion pro-
ceeds as follows: We assume that the performance of the control is
evaluated by the quantity

L8) J:=E[3 (Z:QZ,+Y,.RY, )} ,

where @ and R are positive definite matrices of Mr X Mr and I %! dimen-
sions and T is a properly chosen large integer and the control input Y,
is chosen so as to make J, minimum. Obviously J, admits the repre-
sentation

(1-9) JT =EW1,’QWT +E{Z1/'—l(¢’Q¢')ZT—1 +YT’—1P,Q¢ZT—1
+Z7. QY +Y. (I"Qr+R)Y,_} +dr_y,

and it can be seen that the optimal control Y,_, is given by
(1.10) YT_1=GT_1ZT_1 y
where

Gr=—("Qr'+R)™'I"Q@ .
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By inserting the result of (1.10) into (1.9) and successively applying
Bellman’s optimality principle we get

(1.11) ) Yn=GnZn ’

where G,=—("Py_,+R)™I"P,_,® and P,_, is given by the recursive
relation

P=Q
(1.12) MzPi—l'—Pi—lr(F’Pi—lF"}_R)_l["Pt—l

} 1=2,38,---,T.
Pt=¢IM;"¢

When T is sufficiently large G, will show little change for the further
increase of T and for the control of the stationary process this G, is
used as the fixed controller gain G and the control is realized by

(1.13) Y, =GZ, .

Taking into account the fact that under fairly general condition the
stationary process admits an autoregressive representation (1.2) [6], the
discussion of this section can be considered to have given a theoretical
justification for the controller design based on the model of (1.4) to be
a generally useful procedure.

2. Fitting autoregressive models with FPE

In the following discussions we shall adopt the convention to denote
by X(i) the ith element of a vector X and by A(%, 5) the (3, 7)th ele-
ment of a matrix A.

We assume the model (1.2) of autoregression and consider the case
where U,’s are independently identically distributed and X, is stationary
with finite second order moments. Under the assumption of finiteness
of all order moments of U, it was shown by Mann and Wald [5] that

distribution of the least squares estimate A, of A, based on a set of ob-
servations {X,; n=—M+1, —M+2,.--, N} tends to be Gaussian, i.e.,
the distribution of m(A,,,(i, N—A.(1, ) @,7=1,2,---, k, m=1,2-.-,
M), where k=r+1, tends to be Gaussian with a zero mean vector and the
covariance corresponding to EN(Aml(il, J)—An (i1, 51)) (A,,,z(iz, Jo)— An (s,
J2)) equal to S(iy, ©;)Rz(my, ji; ms, 7;), where S is the variance matrix
of innovations as given by (1.83) and R;}(m, j.; m,, J;) is the ((m,—1)-
k+ 31, (my—1)k+7,)th element of the inverse of the matrix R,, which is
an Mk X Mk matrix with the ((m,—1)k+3,, (m;—1)k+ j,)th element R,.(m,,
Ji; My, J2) equal to EX,_ . (J)X,_m(j:)*. Hereafter we denote the ex-

* cf. Proposition in the Appendix.



168 HIROTUGU AKAIKE

pectation of a random variable assuming this limiting Gaussian distri-
bution to be exact by E., so that we have

E{VN (A, 5)—An(i, 5} =0
and
2.1) E{N(An (1, §:)— An (i1, 50) (An(ir, 52)— An (G, §)}
=8(%1, 1) Rz (my, Ji; my, J2) -

The one-step prediction error when A, is applied to another independent
realization of X, is given by

(2'2) Dn= i—l (Am_Am)Xn—m'l'Un .

We take the expectation E, of D,D. with respect to the realization X,
and get

(2.3) E.D, D=8+ 3 31 4A,EX,_, X! (44, ,

m=1 l=

-

where AAm=Am—Am. We then consider the expectation of the last
term with respect to this limiting distribution. We have

M M
BN 3 3 4A,EX, WXL (4AY |G 1)
M M k k
mz=}1 12=1 jz=i "Eﬂ Ew{NAAm(i’ j)AAl(h’ g)}sz(m; j; lr g) )
and by using (2.1)
M M k k
=S, k) 3 5 PIDY Rzi(m, 3;1, 9)R.a(m, 551, g)
(2.4) — MESG, h) .
Thus we have
Mk
(2.5) E EDNDN_<1+ s >S,
and
(2.6) |E.E.D,D4| = (1+2E )isy ,

where |A| denotes the determinant of a matrix A. We shall call this
last quantity given by (2.6) MFPE (multiple final prediction error) which
coincides with our definition of FPE when k=1,

The meaning of MFPE is intuitively clear but it can not enjoy the
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unique status of FPE in one-dimensional case as an index of of the
prediction error variance. For the adoption of MFPE as our criterion
of the autoregressive model fitting we need a further justification. Since
we are interested in the discrimination of the fitted models it will be
reasonable to take into account the fact that when the process X, is
Gaussian the only sample function entering into the maximized asymp-

totic Iikelihood is | Skl [8], where

M A ’
D AX,)

1

@.7) §=-L 5 (X,,— > Aan_,,> (X,,— l

m=1

Since A,, is obtained by minimizing the trace of S, in (2.7), 4dA,=
A, —A, is minimizing the trace of

n 1 X s M ]

2.8) §=L 5 (U,,— = AAmX,,_,,,> ( U,—3 JAX, _l>
N n=1 m=1 =1

and it must hold that

>

(2.9) 1 (U,,—i AAmX,,_m>X;_,=0 .
N »=1 m=1

From this relation we can get

A 1 N M M 1 N

(2.10) Su=— U U/ =3 3 4A,— > X, X/ (44)) .

N »=1 i=1 m=1 N 231
We have

1 AT
2.11) E<—N— )| U,,U,.) =S,
and similarly as in (2.5)
M M 1 N

2.12) BNE 3 44,1 5 X, XA | = MES .

where as was defined before E. denotes the expectation of the limit
distribution of the quantity within the braces as N tends to infinity.
This observation suggests that for the present discussion where the
quantity of the order of 1/N is playing crucial role it will be reasonable

to adopt 1—MEK/N )“,§M as our estimate of .§,, and accordingly to adopt
—k A
2.13) (1= 2) 18

as our estimate of ||S|.
Based on these observations we propose the following procedure for
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autoregressive model fitting: We fit models with order M 0=<M=<L)
by using the least square method and adopt the one which gives the
minimum of

2.14) MFPE (M)= (1 +MTk>k< —%@-)"‘us‘,u

as our final choice.

3. System identification for control

The procedure described in the preceding section may suffer some
lack of efficiency by assuming one and the same value of M for all the
components, though this allows us to fully enjoy the efficient computing
procedure developed by Whittle [9]. From the stand point of maximiz-
ing the likelihood function in Gaussian case it will be reasonable to focus
our attension to the behavior of the estimate of the prediction error
variance of any subset of the component variables of X, when the cor-
responding components of U, are independent from the rest. As was
discussed in Section 1, in the case of controller design we need only the
estimates of the rows of A, which are giving the system outputs or the
controlled variables. In many practical situations, if only sufficient num-
ber of variables are taken into account, it is quite possible that the
disturbances originating in the controller or the manipulated variables
are independent of those originating in the system, in the sense that
the set of the components of U, corresponding to the controlled variables
are independent of those corresponding to the manipulated variables. In
this case it will be most practical and useful to concentrate our atten-
tion to the subset of the controlled variables and replace the definition
of MFPE (M) by

(3.1) FPEC (0)=(1+2E ) (1-Mk)™18

where S’,, « is the rXr submatrix of S, with the rows and columns cor-
responding to the controlled varibales. FPEC stands for final prediction
error of the controlled variables. By the formulation of Section 1, S,, X
is the X7 submatrix in the upper left hand corner of S,.

By introducing FPEC (M) our model fitting procedure for the con-
troller design will be realized by replacing MFPE (M) in the case of
general autoregressive model fitting by FPEC (M) and by adopting &, b,
which are obtained from /i,,. and the definition (1.5) as the coefficients
of the model and S,, ¥, OF (l—Mfr/N)“‘A,, uy a8 an estimate of the vari-
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ance matrix of the innovations w, within the system. This procedure
will guard us against adopting inadequately large or small values of M
for the system due to the effect of the structure of manipulated vari-
ables.

It should be mentioned here that by following the line of the dis-
cussion of Section 5 of [1] it is possible to show that for K< M, <M,<L,
where K is the order of the autoregressive process, i.e., Ax#0 and A,

=0 for m>K, Nlog, (|Sx,1/ISx,l) is asymptotically distributed as the
M.
sum ;24,, y: of mutually independently distributed chi-square variables
x> each vlvith k? degrees of freedom. Analogously N log, (| S’,, /1 g,, ml) is
M.

asymptotically distributed as the sum ,_éﬂ 7 of mutually independently
distributed chi-square variables y; each with kr degrees of freedom for
K,<M,<M,<L, where K, is such that a,=0 for m>K, and #0 for
m=K,. A proof of this fact will be given in Appendix. Statistical
properties of MFPE (M) and FPEC (M) can be deduced from these re-
sults as in the one dimensional case. It should be noted that as k or
r tends to be large the probabilities of adopting higher values of M,
tend to be small.

The present minimum FPEC procedure will be a reasonable one in
practical applications if only the dependence between the subsets of in-
novations is not quite significant and this will be the case if there exist
lags in the responses of the controlled variables to the variations of the
manipulated variables and also there does not exist any hidden variable
which is influencing on both the controlled and manipulated variables
simultaneously. This consideration suggests the utility of evaluation of
independence between the innovations of controlled and manipulated
variables, since this will give some indication of possible inadequacy of
sampling interval for time sampled observations of a continuous process
and/or of possible existence of some hidden influencing variables. For
this purpose we propose the use of the statistic

3.2) PO |
IS, IS, xl

where S'L, « denotes the I x! matrix in the lower right hand corner of Su.
When it is desired to test the significance of 2 being smaller than 1, the
result by Whittle [8] can be used, which tells that asymptotically

(3.2) §=—N IOge 2

is distributed as a chi-square variable with 7 x! degrees of freedom.
Here we consider the problem of inclusion and exclusion of variables.
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Given a set of controlled variables we adopt the set of manipulated
variables which gives the minimum value of FPEC (M) of (3.1) for the
modelling by the present data. Thus even if there is a record of an-
other manipulated variable we do not think it profitable to include it
into the present model if its inclusion increase the minimum of FPEC.
Exclusion of a manipulated variable can be treated analogously. As to
the inclusion and exclusion of a controlled variables we have only to
place it in the set of manipulated variables and apply the above stated
procedure.

It must be stressed here that this kind of simple and general deci-
sion may be allowed and useful only when there does not exists any
definite structural information of the process under observation. Any
structural information available of the process should be paid carefull
attention at the time of modelling. FPEC will give an indication of
relative merit of each model with respect to the given set of observa-
tion data.

4. A practical computation procedure

In practical applications when a set of data {X,; n=1,2,-.-., N} is
given the sample means of each variables are first deleted and the sam-
ple covariance functions are computed by the formulae:

(4.1)  C(X,_n(5), Xa_i(h))

:'117 N:é+l (X)) — X)) (Xnorym(h)—X(R))  for m=l

N

& 3 X)X Xl) X)) for m2L,

where

XG) = 3 Xll) -

Instead of solving for the least squares estimate A, described in Section
2 we fit the autoregressive model with the second order moments equal
to those given by (4.1) up to the order M. This gives the coefficients
of autoregression AX by the efficient recursive computational procedure
based on a formula given by Whittle [4], [9]. We define k Xk (k=r+1)
matrix C,, for m=0,1,.-., L, by

(4.2) Ca(3, )=C(X,(1), Xoom(9)) -

The matrices Ay (m=1,2,---, M, M=1,2,---, L) are obtained recur-
sively by the following relation with initials A=B!=0 (zero matrix),
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dy=fo=C, and ¢,=C;:

A{'“:{ A¥—D"Bi 1. 1=1,2,---, M
(4.3) D l=M+1
B{m:l Bl —E*Aj¥.1. 1=1,2,+, M
E* I=M+1,
whére
(4.4) D*=exfi'
E¥=e¢ldy
and
du=Co— 3] AXC]
(4.5) eu=CM+1—é AXCors

M
fMZCO_;le BIl'lCl ’

where / denotes transpose. We replace S, of the preceding section by
d, and taking into account of the effect of adjusting for the mean we
modify the definitions of MFPE and FPEC into

MFPE (M)=<1+ M’j\;fl )"(1— M’j\}“ >_k"du“

and

FPEC (M)=(1+ M';“ >'(1— M’;Ll )_'Ildr,xll :

respectively, where d, , is the r»Xxr submatrix in the upper left hand
corner of dy.

Taking into account the required degrees of freedom of the related
statistics, it seems reasonable to keep L within the limit of N/(10k) or
NJ/(5k).

5. Numerical examples

The decision procedure described in the preceding section was applied
to the real data of cement rotary kilns of Chichibu Cement Company,
Kumagaya, Japan, by Dr. T. Nakagawa and other members of the com-
pany. It was found that the procedure is very useful for the design
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of actual controllers and is eliminating the tedious trial and error pro-
cess of identification of the basic model. Technical details of the recent
results will be published shortly. We shall here content ourselves by
presenting some of the results obtained by applying the procedure to a
set of old data of which analysis was reported in [7]. The data were
obtained while the kiln was under human control. By the result of the
former analysis three variables were selected as controlled variables,
which will be represented by z.(1), x.(2) and z.(3), and four variables
Y(1), ¥.(2), ¥.(3) and y,(4) were identified as manipulated variables. For
various combinations of variables the values of the minimum FPEC (M)
are given in the Table 1 along with the values M, of M which gave the

Table 1. Application to kiln data

Controlled variable Manipulated variable Mo | FPEC (M) x 10
(1), Ta(2), Zn(3) 6 2.22927
Tn(1), 2a(2), Ta(3) yn(l) 6 2.23594
Za(1), zn(2), zn(3) Yn(2) 7 2.27954
Zn(1), 2n(2), xn(3) yn(3) 6 2.15254
Zn(1), Tn(2), Tn(3) Yn(4) 6 2.17707
Zn(1), Zn(2), Tu(3) yn(3), ya(1) 6 2.10345
Zn(1), Zn(2), 2n(3) Yn(3), ¥a(2) 6 2.20113
(1), xn(2), T(3) Yn(3), ¥a(4) 6 2.08433
za(1), za(2), zn(3) ¥n(3), ¥n(4), ¥a(1) 6 2.05687
Zn(1), xn(2), Tn(3) Yn(3), ¥n(4), ¥n(2) 6 2.13427
.17”(1), xﬂ(z)r xﬂ(s) y,.(3), yﬂ(‘l‘)’ yﬂ(l)» y’l(z) 6 2-09615

minima. The length of observation was N=511 and L was set equal
to 15. The results in Table 1 show that the variables y,(3), ¥.(4), ¥.(1)
and y,(2) are contributing to reduce the FPEC (M) in this order and
that the inclusion of ¥,(2) into the model may not be profitable. Later
analysis has shown that this result may be due to the very noisy be-
havior of ,(2) at the time of the experiment and the data provided by
the later experiments under more natural running conditions have proven
the inclusion of %.(2) necessary. The result is also considered to be due
to the fact that the effect of manipulating y,(2) tends to be significantly
non-linear when the system is too noisy or abnormal. °
The present use of FPEC may find application in many other situa-
tions, such as the case of cross-spectrum estimation by autoregressive
model fitting. In this case if uncorrelated observations are included into
the fitting procedure this will introduce some bias into the values of
M,, the value of M which gives the minimum of FPEC (M) (M=0, 1,
-+, L). In the case of the example of Table 1 the value of M, which
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gave the minimum of MFPE for the total seven variables was equal to
4 contrary to 6 giving the minimum of FPEC. Thus a reasonable pro-
cedure may be to watch the behaviour or FPEC (M,) at each inclusion
of new variables into the analysis and divide the variables into small
number of groups and adopt a different value of M, for each group.
To show the feasibility of this type of procedure a numerical experiment
was performed on the variables z,(1) (=1, 2, 3, 4), where ,(1) and x.(2)
were given by the relations

x,(1)=0.5z,_,(1)+0.42,_(2) +v.(1)

5.1
&b £,(2)=—0.6,_,(1)+0.72,_,(2) +0.3%,_5(1) +0.22,_5(2) +v4(2)
and
V(1) =u,(1)+0.4u,(2)
(5.2)

Vu(2) =a(2)+0.4u,(1) ,

where u,(1) and u,(2) are the sequences of mutually independent random
numbers both uniformly distributed over [—0.5, 0.5], and x,(3) and x.(4)
were realizations of physical processes which were mutually independent
and also independent from x,(1) and «,(2). The results of application of
our procedure are given in Table 2. For the sake of simplicity we de-
noted the variables for which we have evaluated FPEC (M) as controlled
variables and other variables taken into consideration as manipulated
variables. FPEC (M) is equal to MFPE (M) when the manipulated vari-
ables are absent. The values L=15 and N=500 were adopted. The

Table 2. Application to artificial data

Controlled variable M%gi,?:g?éed M, | FPEC(My) ( d.Ef.)
zn(1) 3 0.558057
za(1) zn(2) 1 | 0.094309 2-?;‘)10’
zn(1), zn(2) 2 0.004971
Zn(1), za(2) Zn(3) 2 | 0.005031
zn(1), Zn(2) zn(3), Tn(4) 2 | 0.005079 (2;{’;
Zn(1), Zn(2), Zn(3), Tn(3) 4 | 0.000672
Zu(3), Tu(4) 13 | 0.003382
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results show that the inclusion of x,(2) into the analysis along with x,(1)
is profitable but the inclusion of ,(3) and x,(4) is unprofitable. Also the
inclusion of #,(3) or #,8) and w,(4) causes an unnecessary increase of
M for xz(n) and x,(n) and decrease for x,(n) and z(n). Though the al-
most perfect identifications of orders of the model is partly by coinci-
dence the results give a very clear illustration of the possible use of the
procedure discussed in the preceding paragraph. Two of the values of
the chi-square variable & defined by (3.2) are also illustrated in Table 2
with corresponding degrees of freedom within the parentheses. The
values very clearly show the dependence and independence of innova-
tions in the two cases and suggest the utility of this statistic.

6. Concluding remarks

The minimum FPEC procedure described in this paper will be valid
even if the manipulate variables y,(i) contain deterministic components
if only it is assured that the sample variance and covariance matrices
C(Xo-m(31)s Xn-m,(52)) tend to some definite constant matrices which can
replace EX,_, (5,)X, -m,(72) in the definition of R,, of Section 2, which is
assumed to be non-singular for any choice of M. In this way the pro-
cedure may find an application in the field of econometric model building.
It must be born in mind that generally a manipulated variable under
completely noise-free linear feedback control is not allowed in the pres-
ent identification procedure. If it is considered to be desirable to adopt
different values of M for each controlled variables we ean apply the
procedure by assuming each controlled variable in turn as the only out-
put of the system and assuming all the variables except this one as
manipulated variables in the definition of FPEC. The use of this pro-
cedure has been discussed in [3]. This is equivalent to ignoring the ef-
fect of possible correlations within the components of innovations. There
are obvious modifications of the procedure to allow finer specifications
of the system equations, but except for some special situations the pro-
cedure described in the present paper will serve as the most practical
and generally useful one for the identification of a system for the pur-
pose of controller design.
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Appendix
A derivation of the asymptotic distribution of statisties
(A.2) kx=—Nlog, [W;'S, .l ,
where
(A.2) W,=-L 5w
N =1

and w, is given by (1.5), is presented here. The distribution of these
statistics forms a theoretical background of the minimum FPEC pro-
cedure proposed in the text. We shall hereafter denote the operation

N é by . We sometimes use the notation
n=1
t —r— —l—
(A.3) en=170Cn, bul
and also recall the definition X;/=[x;y.].
We have
A - M PR
(A'4) Sr,M':xnxr’z— 2_ éan—mxr,t
=HM)—-N"'QM),
where

(A5)  HM)=52i— 3 enXomit 0 X nch)+ 31 3 e X n XL

m=1 l=1

and
(A.6) QN =N 33 32 de, XX (der)

where d¢,=¢é,—c, and ¢, is the least squares estimate of ¢,. We as-
sume c¢,=0 for m=K, and get

(A.7) HM)=w,w),
=W, for M=K, .

We also have for M=K,

(A.8) ey, dey, -+, dea) =[w, X1, WX o, -+, WX wCS
where C,, is an Mkx Mk matrix with

(A.9) Coo A=)k +1, (m—1)k+ §) =X, (D) X, _n(J) -
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For this case Q(M) can be represented in the form
(A.10) QM)=N[wX'|C:'[wX"],
where

X,::[ n’-—lr Xn,—z:' tty Xn’—M]
(A.11) and

[WXI]:[wan,—l’ M) wan/—H] .
The whole discussion will depend on the following

PROPOSITION (Mann and Wald [5]). The limit distribution of v N[wX']
(¢, (—Dk+7) (1=1,2,--+,7; 1=1,2,---,M; j=1,2,---,k) is Gaussian
with a zero mean vector and with the variance covariance matrix given
by the relation

(A.12) E.N([wX"1,-Y((wX'1(,-)) =8, j)R.. ,

where [ ](7,+) denotes the ith row of the matrix [ ] and R,.,=EXX".
Since we have for M>K,

(A.13) IWS el = | I= N-W QUMW 2
we have
(A.14) —N log, | W, 'S, x| = Trace (W, QM)W **)+o,(1) ,

where 0,(1) denotes a term which is stochastically vanishing as N tends
to infinity. Thus we have only to concern ourselves with the limiting
distribution of Trace (W, “*Q(M)W, ). The limit distribution of this
quantity is identical if we replace C,, in the definition of QM) by its
theoretical value R,, and W, by S, which is the X7 matrix at the up-
per left corner of S. We know that there is a special orthogonalization
procedure of X, ,, X, ,,---, X,_,, which is implicitly described in Sec-
tion 4 and, by using the same notation for the corresponding quantities,
is realized in the form

-1

(A.15) Zn_z: el E Bf,,_lX,,_H_m l=1, 2’ ey M .

m=1

We further orthonormalize the components within Z,_, by a transfor-
mation

(A.16) V. =02, ,

where O, is a kxk matrix. Combining these transformations we get a
transformation 7'



AUTOREGRESSIVE MODEL FITTING FOR CONTROL 179

(A.17) V=T.X,

where V'=[V/,V/,---, V4] and Ty is an M XM block matrix of kxk
matrices, of which superdiagonal triangular part is filled with k Xk zero
matrices. From the structure of 7, we have

(A.18) EVV'=I
= TMRJ:ITI,I ’

where I denotes an Mk x Mk identity matrix, and Q(M) can be replaced
by

(A.19) QM)=N[wV'][wV"],
where it holds that

(A.20) EN(wV']YG, ) [wV']1(7,)=8,G, HI .

This shows that in the limit distribution the columns of ¥/N[wV’] are
distributed independently with covariance matrices equal to S, and con-
sequently the components of the » x Mk matrix +N S;"[wV’] are asymp-
totically distributed mutually independently as Gaussian with zero means
and unit variances. Since W, converges to S, with probability one as
N tends to infinity we can see that the limit distribution of Trace (W, '
QM)W %) is identical to that of

r

M k J—
(A.21) PIPIPY (VN (S [wV"]) (5, (—1)k+j)}* .
It is obvious that Ty is identical to the Mk x Mk matrix at the left up-
per corner of T, for M<L and since V=T,X we can see that (A.21)
is identical to the partial sum

(A.22) lﬁ &)  for ML,

where

HO=3 3 (VNS [V )G, (—Dk+3))*

(=1,2,.--, L) are defined by putting M=L in (A.21) and are asymp-
totically mutually independently distributed as chi-square variables with
d.f. kr. This gives the asymptotic property of the statistic £, defined by
(A.1) and completes the proof of the statement made at Section 3 about

the asymptotic distribution of N log, (IS, x,I/IS,.x,l) which is equal to
Ky,— Ky, (kr§M§Mz§L)
Since we have
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(a.23) N(EPECOL) ) oy, pjkr—Nlog, 135l 4,1y,

FPEC (M,) 1S+,

we can see from the above result that for M,>=M,>K, N(FPEC (M,)/
FPEC (M))—1) will asymptotically behave as a realization of a random
walk with variance of each step equal to 2kr and with upward drift of
amount kr. Thus when kr tends to be significant compared with N the
present minimum FPEC procedure may show the tendency to under-
estimate the order of the process, ignoring the effect of the bias of or-
der kr/N.
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CORRECTION TO
“ AUTOREGRESSIVE MODEL FITTING FOR CONTROL”

H. AKAKE

This Annals, 23 (1971), 163-180. On page 167, line 8, P,=¢'M,®
should be read as P,=9'M,9+Q.
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