DISTRIBUTION OF CERTAIN FACTORS USEFUL IN DISCRIMINANT ANALYSIS

R. P. GUPTA AND D. G. KABE

(Received Sept. 9, 1969; revised May 1, 1970)

1. Introduction and summary

Let A be a $(p \times p)$ symmetric positive definite matrix having the noncentral Wishart density.

\begin{equation}
(1.1) \quad f(A) = \exp \left(- \text{tr} \left(\Sigma^{-1} \Omega \right) \right) \frac{\Gamma_p \left(\frac{1}{2} q, \frac{1}{2} \Sigma^{-1} \Omega \Sigma^{-1} A \right)}{W(A | \Sigma | q)}
\end{equation}

where

\begin{equation}
(1.2) \quad W(A | \Sigma | q) = \frac{|A|^{(q-p-1)/2} \exp \left(- \frac{1}{2} \text{tr} \Sigma^{-1} A \right)}{2^{2p/4} \Gamma_p \left(\frac{1}{2} q \right) |\Sigma|^{q/2}}
\end{equation}

and

\begin{equation}
(1.3) \quad \Gamma_p \left(\frac{1}{2} q \right) = \pi^{p(p-1)/4} \prod_{i=1}^{p} \Gamma \left(\frac{1}{2} (q+1-i) \right),
\end{equation}

and \(_pF_1(q/2, \Sigma^{-1} \Omega \Sigma^{-1} A/2) \) is a hypergeometric function of matrix arguments, see ([7], p. 733). Let B be another $(p \times p)$ symmetric positive definite matrix, having central Wishart density

\begin{equation}
(1.4) \quad f(B) = W(B | \Sigma | n-q).
\end{equation}

Assuming the matrix Ω to be of rank $s<p$ we make the transformations

\begin{equation}
(1.5) \quad A = C(I - L)C', \quad B = CC',
\end{equation}

where C is a lower triangular matrix of order p. The noncentral multivariate beta density of the $(p \times p)$ matrix L is found by Radcliffe ([7], p. 734) to be

* This research was supported by the National Research Council of Canada grant.
\[g(L) = |L|^{(q-p-s-1)/2} |I-L|^{(q-p-s-1)/2} \theta(L_{11}) , \]

where \(\theta(L_{11}) \), see Radcliffe ([7], p. 734), involves only the elements of \(s \times s \) matrix \(L_{11} \) and other parameters but not any other elements of \(L \).

The noncentral multivariate beta density of \(L \) is a direct generalization of the noncentral linear beta density of rank one of \(L \) as given by Kshirsagar [5], who used the density of \(L \), to derive the distribution of the test criterion for testing the adequacy of a single hypothetical discriminant function. Radcliffe generalizes Kshirsagar's results and gives the test criterion for testing the adequacy of \(s (\leq p) \) hypothetical discriminant functions. If \(\Gamma'x \), where \(\Gamma' \) is an \(s \times p \) matrix of rank \(s \), denote the \(s \) discriminant functions, then \(A=|L| \) may be factorized as

\[A = A_1 A_2 |L_{11}| \]

where the direction and collinearity factors \(A_1 \) and \(A_2 \) are

\[A_1 = \frac{|\Gamma'AB^{-1}(B-A)\Gamma'\Gamma'\Gamma|}{|\Gamma'(B-A)\Gamma|} \]

\[A_2 = \frac{A}{|L_{11}|} \frac{|\Gamma'(B-A)\Gamma'\Gamma'\Gamma|}{|\Gamma'\Gamma'\Gamma|} \frac{|\Gamma'AB^{-1}(B-A)\Gamma|}{|\Gamma'(B-A)\Gamma|} . \]

It may be noted that the factorization of \(A \), given here, is a generalization of the factorization given by Bartlett [2].

By choosing \(\Gamma'=(I,0) \) where \(I \) is an \(s \times s \) identity matrix and factorizing the density of \(L \) in terms of rectangular coordinates \(T, L=TT' \), \(T \) a lower triangular, Radcliffe [7] expresses the densities of \(A_1 \) and \(A_2 \) in terms of the elements of \(T \). He also gives another factorization of \(A \) as, Radcliffe ([7], p. 732),

\[A = A_5 A_6 |L_{11}| , \]

where

\[A_5 = \frac{|B-A||\Gamma'AF' + \Gamma'PA(B-A)^{-1}AF'|}{|B||\Gamma'AF'|} \]

\[A_6 = \frac{|\Gamma'BF'\Gamma'|}{|\Gamma'(B-A)\Gamma'\Gamma'AF' + \Gamma'PA(B-A)^{-1}AF'|} \]

\(A_5 \) and \(A_6 \) are also useful for testing direction and collinearity of the hypothetical discriminant functions \(\Gamma'x \). Following Kshirsagar's [6] method, Radcliffe expresses \(A_5 \) and \(A_6 \) as functions of the elements of \(T \) and obtains their distributions. We are giving here a shorter and neater proof, which might be of pedagogical interest. Also our main interest is to express \(A_1, A_2, A_5 \) and \(A_6 \) as functions of the elements of \(L \), rather than functions of elements of \(T \). All distributions are derived without
the constant factor, \(K \) is used as a generic symbol for the constant factors of the density functions.

2. Distribution of \(A_1 \) and \(A_2 \)

By partitioning \(L \) and \(I - L \) as

\[
L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}, \quad I - L = \begin{pmatrix} I - L_{11} & -L_{12} \\ -L_{21} & I - L_{22} \end{pmatrix}
\]

and using (1.6) we write the joint density of \(L_{11}, L_{12}, L_{22} \), as,

\[
f(L_{11}, L_{12}, L_{22}) = K \left| L_{11} \right|^{(s - q - p - 1)/2} \left| I - L_{11} \right|^{(q - p - 1)/2} \theta(L_{11}) \\
\cdot \left| L_{22} - L_{21} L_{11}^{-1} L_{12} \right|^{(s - q - p - 1)/2} \\
\cdot \left| I - L_{22} - L_{21} (I - L_{11})^{-1} L_{12} \right|^{(q - p - 1)/2}.
\]

On setting

\[
Z = L_{22} - L_{21} L_{11}^{-1} L_{12} \\
R = (I - L_{21} (I - L_{11})^{-1} L_{12})^{-1/2} Z (I - L_{21} (I - L_{11})^{-1} L_{12})^{-1/2}.
\]

We find that the joint density of \(L_{11}, L_{12} \), and \(R \) is given by

\[
f(L_{11}, L_{12}, R) = K \left| L_{11} \right|^{(s - q - p - 1)/2} \left| I - L_{11} \right|^{(q - p - 1)/2} \theta(L_{11}) \\
\cdot \left| I - L_{21} (I - L_{11})^{-1} L_{12} \right|^{(s - q - s - 1)/2} \\
\cdot \left| R \right|^{(s - q - p - 1)/2} \left| I - R \right|^{(q - p - 1)/2}.
\]

Again we set \(\Delta = L_{21} (I - L_{11})^{-1} L_{12} \) and assuming \((p - s) \leq s\) we use Hsu’s lemma, (Anderson [1], p. 319, Lemma 13.3.1) to integrate (2.4) with respect to the elements of \(L_{12} \) and find the joint density of \(L_{11}, \Delta \), and \(R \) to be

\[
f(L_{11}, \Delta, R) = K \left| L_{11} \right|^{(s - q - s - 1)/2} \left| I - L_{11} \right|^{(s - s - 1)/2} \theta(L_{11}) \\
\cdot \left| I - \Delta \right|^{(s - q - s - 1)/2} \left| \Delta \right|^{(s - s - 1)/2} \\
\cdot \left| R \right|^{(s - q - p - 1)/2} \left| I - R \right|^{(q - p - 1)/2}.
\]

By setting \(\Gamma'(I, 0) \), it may be easily seen that

\[
A_1 = \left| I - \Delta \right| \quad \text{and} \quad A_2 = \left| R \right|.
\]

It follows from (2.5) that the densities of \(A_1 \) and \(A_2 \) are mutually independent. The densities of \(A_1 \) and \(A_2 \) are identical with those of a product of independent beta variates. This result agrees with the one given by Radcliffe ([7], p. 738), except the fact that we assume \(p \leq 2s \) and Radcliffe assumes \(p \geq 2s \).
3. Distribution of A_s and A_t

Noting that,

\begin{equation}
A_s = \frac{|z|}{|z + L_{11}(L_{11}(I - L_{11}))^{-1} L_{11}|}
\end{equation}

$A_t = |z + L_{21}(L_{11}(I - L_{11}))^{-1} L_{11}|$, we set $z = PP'$, where P is a nonsingular matrix of order $(p-s) \times (p-s)$. The joint density of L_{11}, P and L_{12} may be obtained by using the result (2.3), and we find that

\begin{equation}
f(L_{11}, P, L_{12}) = K |L_{11}|^{(a - q - p - 1)/2} |I - L_{11}|^{(q - p - 1)/2} \theta(L_{11})
\cdot |I - PP' - L_{21}(L_{11}(I - L_{11}))^{-1} L_{11}|^{(q - p - 1)/2}
\cdot |PP'|^{(a - q - p)/2}.
\end{equation}

Further transforming L_{11} to η, where η is an $(p-s) \times s$, by the relation

\begin{equation}
L_{11} = P\eta
\end{equation}

the joint density of L_{11}, P and η is found to be

\begin{equation}
f(L_{11}, P, \eta) = K |L_{11}|^{(a - q - p - 1)/2} |I - L_{11}|^{(q - p - 1)/2} \theta(L_{11})
\cdot |P(I + \eta(L_{11}(I - L_{11}))^{-1} \eta')P'|^{(a - q - p + s)/2}
\cdot |I + \eta(L_{11}(I - L_{11}))^{-1} \eta'|^{(a - q - p + s)/2}
\cdot |I - P(I + \eta(L_{11}(I - L_{11}))^{-1} \eta')P'|^{(q - p - 1)/2}.
\end{equation}

Now we set

\begin{equation}
P(I + \eta(L_{11}(I - L_{11}))^{-1} \eta')P' = W
\end{equation}

and using Hsu’s lemma (Anderson [1], Lemma 13.3.1) we find the joint density of W, η and L_{11} to be

\begin{equation}
f(L_{11}, W, \eta) = K |L_{11}|^{(a - q - p - 1)/2} |I - L_{11}|^{(q - p - 1)/2} \theta(L_{11})
\cdot |I + \eta(L_{11}(I - L_{11}))^{-1} \eta'|^{(a - q)/2}
\cdot |W|^{(a - q - p + s - 1)/2} |I - W|^{(q - p - 1)/2}.
\end{equation}

Further setting

\begin{equation}
\eta(L_{11}(I - L_{11}))^{-1} \eta' = G
\end{equation}

and using (3.6) and Hsu’s lemma we get

\begin{equation}
f(L_{11}, G, W) = K |L_{11}|^{(a - q - s - 1)/2} |I - L_{11}|^{(q - s - 1)/2} \theta(L_{11})
\cdot |I + G|^{(a - q)/2} |G|^{(2a - p - 1)/2}
\cdot |W|^{(a - q - p + s - 1)/2} |I - W|^{(q - p - 1)/2}.
\end{equation}
Again transforming G to H by the transformation

\[(3.9) \quad H = (I+G)^{-1}\]

and noting that the Jacobian of the transformation from H to G is $|I+G|^{-(p-s+1)}$ we obtain the joint density of L_{11}, H and W to be

\[(3.10) \quad f(L_{11}, H, W) = K |L_{11}|^{(n-q-p-1)/2} |I-L_{11}|^{(q-s-1)/2} \theta(L_{11})
\cdot |H|^{(n-p-s-1)/2} |I-H|^{(2s-p-1)/2}
\cdot |W|^{(n-q-p+s-1)/2} |I-W|^{(q-p-1)/2}.

Here we note that $A_4 = |H|$ and $A_5 = |W|$. It, thus, follows that the densities of A_4 and A_5 are independent. This result agrees with the one given by Radcliffe ([7], p. 739), except that we assume $p \leq 2s$ while Radcliffe assumes $p \geq 2s$.

4. Distribution of A_4 and A_5

We have noted above that the A_i is distributed as a product of $(p-s)$ independent beta variables and as such we must be able to factorize A_i into $(p-s)$ mutually independent beta variables. Consider the factorization of A_i into two parts

\[(4.1) \quad A_i = A_4 A_5,
\]

where $A_4 = a_{11}$, a_{11} being the first element of the matrix $A = L_{11}(L_{11}(I-L_{11}))^{-1} L_{12}$. From (2.5) we find the density of the $(p-s) \times (p-s)$ matrix A to be

\[(4.2) \quad f(A) = K |I - A|^{(n-q-s)/2} |A|^{(2s-p-1)/2}.
\]

Partitioning A and $I - A$ as

\[(4.3) \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad I - A = \begin{pmatrix} 1 - a_{11} & -a_{12} \\ -a_{21} & I - a_{22} \end{pmatrix},
\]

where a_{11} is 1×1, a_{12} is $1 \times (p-s)$, a_{21} is $(p-s-1) \times (p-s-1)$, the joint density of a_{11}, a_{12} and a_{21} can be written as

\[(4.4) \quad f(a_{11}, a_{12}, a_{21}) = K a_{11}^{n-p-1/2} \left| a_{21} - \frac{a_{11} a_{12}}{a_{11}} \right|^{(2s-p-1)/2}
\cdot (1-a_{11})^{(n-q-s)/2} \left| I - a_{21} - \frac{a_{11} a_{12}}{1-a_{11}} \right|^{(n-q-s)/2},
\]

Now we set

\[(4.5) \quad M = a_{21} - \frac{a_{11} a_{12}}{a_{11}} \]
and find the joint density of \(A_{11}, M \) and \(A_{21} \) to be

\[
f(A_{11}, A_{21}, M) = K A_{21}^{2s-p-1/2} |M|^{(2s-p-1)/2} \cdot (1 - A_{11})^{(n-q-s)/2} \left| I - M - \frac{A_{21} A_{12}}{A_{11}(1 - A_{11})} \right|^{(n-q-s)/2}
\]

substitute

\[A_{21} = A_{11} (1 - A_{11})^{1/2} (I - M)^{1/2} \delta, \]

we obtain the joint density of \(A_{11}, M \) and \(\delta \) as

\[
f(A_{11}, M, \delta) = K A_{11}^{2s-p-1/2} A_{12}^{p-1/2} \cdot (1 - A_{11})^{(n-q-s)/2} (1 - A_{11})^{(p-s-1)/2} \left| M \right|^{(2s-p-1)/2} \left| I - M \right|^{(n-q-s+1)/2} \left| I - \delta \delta' \right|^{(n-q-s)/2}
\]

from (4.7) we see that the densities of \(A_1 = A_{11} \) and \(A_2 = |M| \) are independent. We also note that \(A_1 | M = A_2 A_4 = A_1 \). Radcliffe derives the distribution of \(A_4 \) and \(A_1 \) for the particular case \(s=2 \). We also proceed to obtain the results for \(s=2 \). In this case we proceed as follows. From equation (2.4) the density of \(L_{11} \) and \(L_{12} \), for \(s=2 \), is

\[
f(L_{11}, L_{12}) = \theta(L_{11}) \left| L_{11} \right|^{(n-q-p-1)/2} \left| I - L_{11} \right|^{(q-p-1)/2} \left| L_{12} \right|^{(n-p-3)/2} \left| I - L_{12} - L_{11} \right|^{(n-p-3)/2} \left| I - L_{11} \right|^{(n-p-3)/2}.
\]

Let \(L_{12} L_{21} = V \), using Hsu’s lemma, the joint density of \(L_{11} \) and \(V \) is

\[
f(L_{11}, V) = K \left| L_{11} \right|^{(n-q-p-1)/2} \left| I - L_{11} \right|^{(q-p-1)/2} \theta(L_{11}) \left| L_{11} \right|^{(n-p-3)/2} \left| I - L_{11} - V \right|^{(n-p-3)/2} \left| V \right|^{(p-3)/2}.
\]

Further setting

\[
\left\{ \begin{align*}
L_{11}(I - L_{11}) - V &= R \\
L_{11}(I - L_{11}) &= U U^{T}
\end{align*} \right.
\]

where \(U \) is a lower triangular matrix and \(R = U F U^{T} \) we find that the density of the matrix \(F \) is independent of \(L \) and is given by

\[
f(F') = K \left| F' \right|^{(n-p-3)/2} \left| I - F' \right|^{(p-3)/2}.
\]

We further note that \(A_1 = |F| \), \(A_2 = f_{11} \) where \(f_{11} \) is the first element of \(F \). Proceeding on similar lines as in (4.3) and (4.4) and setting \(x_{12} = f_{12} - f_{12}^{1/2} f_{12}^{1/2} \) and \(1 - x_{12} = (1 - f_{12})^{1/2} (1 - f_{12})^{1/2} f_{12}^{1/2} x_{12} \) the joint density of \(f_{12} \), \(x_{12} \) and \(x_{12} \) can be expressed as
DISTRIBUTION OF CERTAIN FACTORS USEFUL IN DISCRIMINANT ANALYSIS 103

\[f(f_{11}, x_{22}, x_{12}) = K f_{11}^{(n-p-1)/2} (1 - f_{11})^{(p-4)/2} x_{22}^{(n-p-3)/2} \]
\[\cdot (1 - x_{22})^{(p-4)/2} (1 - x_{12})^{(p-5)/2}. \]

It follows from (4.12) that beta densities of \(f_{11} = \lambda_4, x_{22} = \lambda_4 \) are independent. This result agrees with the one given by Radcliffe ([7], p. 740).

DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA CANADA
ST. MARY'S UNIVERSITY, HALIFAX, NOVA SCOTIA CANADA

REFERENCES