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1. Introduction

Suppose we are sampling on a k dimensional random variable X,
defined over R* Euclidean space of % dimensions, and let {A}=U de-
note a oc-algebra of subsets A of R*. We assume that A c B=DBorel
subsets of R*.

Suppose further that X has the absolutely continuous distribution

(L) Faio=" " r@, - ul00 v

and 6 € 2, with 2 an indexing set which we will refer to as the param-
eter space. We denote a random sample of % independent observations
on X by (X;,--+, X,) or {X;}. We have the following definitions.

DEFINITION 1.1. A statistical tolerance region S(X,---, X,) is a
statistic defined over R!*X-..-xXR*=R*, which takes values in the o-
algebra 2.

This definition, then, implies that a statistical tolerance region is a
statistic which is a set function, and maps “the point” (Xi,:---, X,) €
R* into the region S(Xi,---, X,) € ¥, that is, S({X;})cR*. When con-
structing such statistical tolerance regions, various criteria may be used.
One that is often borne in mind is contained in the following definition.

DEFINITION 1.2. S(X,,---, X,) is a B-expectation statistical tolerance
region if
(1.2) Exy {FIS(X,, -, X.) |61} =5
for all @ € 2, where
(1.23) Fisiol={-:-{ fy10)dy .
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The quantity F[S|0]=F[S(X;,---, X,)| 8] is called the coverage of
the region S, and will be denoted by C[S]. We note that it can be
viewed as the probability of an observation, say, Y, falling in S, where
Y is independent of Xj,---, X, and, of course, has distribution F(y|8).
Now because S(Xj,---, X,) is a random set function, F[S(X,,---, X,)|6]
is a random variable and has the distribution of its own. Hence, con-
structing an S to satisfy (1.2), simply implies that we are imposing the
condition that S be such that the distribution of its coverage F[S]6]
has expectation (mean value) 3. Paulson [6] has given a very interest-
ing connection between statistical tolerance regions and prediction regions.

PAULSON’S LEMMA. If on the basis of a given sample on a k-dimen-
stonal random variable X, a k-dimensional “confidence” region S(X,
<o+, X,) of level B is found for statistics Ti,---,T., where T;=T(Y,,
-++, Y,), where the (kX 1) vector observations Y,, j=1,---,q are independ-
ent observations on X, and independent of X,,---, X,, and +f C s de-
fined to be such that

(1.3) c= SS dG(t)

where G(t) is the distribution function of T (T"=(T},---,T:), and T;=
T, (Yy,---,Y,), then

(1.4) E[C]=8 .

Before we prove this lemma, we remark that our interest will be
for the case ¢=1, (that is, we will have one future observation ¥, =7Y),
and T, =T(Y)=Y,; so that T=Y and G{#)=F(y|8). Hence, C given
by (1.8) is simply the coverage of S(Xi,---, X,). Note that C depends
here on S and @ and indeed we may write C=Cy(S).

In these circumstances, then, Paulson’s Lemma then gives us an
operational method for constructing a statistical tolerance region of -
expectation, namely :

Find S, a prediction region of level 8 for a future observation Y.
If this is done, then S is a tolerance region of B-expectation.

PrROOF OF PAULSON’S LEMMA. The joint distribution function of
Xl)"') Xrn iS

11 F(xi16) .
Now the left-hand side of (1.4) may be written as

(1.5) E(C1={ .| dGwd ]I Fx6).
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But the right-hand side of (1.5) is the probability that T lies in S, and
we are given that S=S(Xi,---, X,) is B-level confidence region for T
(or prediction region for T'). Hence, the right-hand side of (1.5) has
value 8, and we have that E[C]=3.

As an illustration of the above, we take the case ¢=1, and suppose
that sampling is on the k-dimensional normal variable N(g, 2). It is
well known that a 1008 % prediction region for Y, where ¥ =N(gu, 2),
constructed on the basis of the random sample of n independent obser-
vations X;,---, X, [where Y, X,,---, X, are all independent] is

(1.6) SUXN ={Y [ (Y~X)YV(Y-X)=C}}

where the mean vector X and the sample variance-covariance matrix V
are defined by

XZ()—(“ . Xk)zn-l<g _Xﬂ, cen, ?:_,‘lek> =n"! gXt
(1.6a)
V=(n—1)" 3 (X~ X)(X— XY,

with C, given by
(1.6b) Co=[(n—1)k/(n—E)][1+n""1Fy n_t:1-5

and F,, .. ; is the point exceeded with probability 1—8 when using
the Snedecor-F distribution with (k, n—k) degrees of freedom. Hence,
by Paulson’s Lemma, S given by (1.6) is a p-expectation tolerance re-
gion. This region is known to have certain optimum properties—see,
for example, Fraser and Guttman [1].

We now approach the problem of constructing “ -expectation ” toler-
ance regions from the Bayesian point of view. We will see that there
is a direct analogue of Paulson’s Lemma, which arises in a natural and
interesting way.

2. The Bayesian approach

In the Bayesian framework, references about the parameters € in
a statistical model are summarized by the posterior distribution of the
parameters which are obtained by the use of a theorem due to the
Reverend Thomas Bayes. This theorem, a simple statement of condi-
tional probability, states that the distribution of the parameters &, given
that X, is observed to be x;, 1=1,---, n, is

2.1) o0 | {x:}]=cp(@)p[{x.}|6] ,

where the normalizing constant ¢ is such that
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(2.12) o= poypl(xy1 010,

p(0) is the (marginal) distribution of the vector of parameters &, and
pl{x:}| 6] is the distribution of the observations {X,}, given §. When
we are indeed given that {X.}={x;}, then we often call p[{x;}|8] the
likelihood function of @ and denote it be I[@]{x;}].

The ingredients of (2.1) may be interpreted as follows. The distri-
bution p(8) represents our knowledge about the parameters @ before the
data are drawn, while I[8 | {x;}] represents information given to us about
6 from the data {x;}, and finally, p[@]|{x:}] represents our knowledge
of @ after we observe the data. For these reasons, p(8) is commonly
called the a-priori or prior distribution of @, and p[@|{x;}], the a-
posteriori or posterior distribution of 8. Using this interpretation,. then,
Bayes’ theorem provides a formal mechanism by which our a-priori in-
formation is combined with sample information to give us the posterior
distribution of 6, which effectively summarizes all the information we
have about 6.

Now the reader will recall that S is a tolerance region of g-expecta-
tion if its coverage C[S] has expectation 8. Now, from a Bayesian point
of view, once having seen the data, that is, having observed {X;}={x},

then C[S]=SS f(y|8)dy is a function only of the parameters &, and the

expectation referred to is the expectation with respect to the posterior
distribution of the parameters @, that is, on the basis of the given data
{x.}, we wish to construct S such that

@2 BiCIS] | (xd1=| | 7w|0)pl0] (x)1dydo=s
where Y has the same distribution as the X;, namely f(-|6). Now it

is interesting to note that, assuming the conditions of Fubini’s Theorem
hold, so that we may invert the order of integration, we have that

(2.3) E(CIS1| =)= |, £w|0)pl0 | (x)1d0dy
=, iy txd1ap .
Now the density A[y|{x:}], where
(2.4) hly | (=d1={, f(y10)p10 | (x1d0
is (examining the right-hand side of (2.4)) simply the conditional distri-

bution of ¥, given the data {x;}, where ¥ may be regarded as an ad-
ditional observation from f(x|@), additional to and independent of X,
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-, X,. This density h[y|{x}] is the Bayesian estimate of the distri-
bution of ¥ and has been called the predictive or future distribution of Y.
(For further discussion, see, for example, Guttman [4] and the references
cited therein.)

Hence, (2.2) and (2.3) have the very interesting implication that S
is a B-expectation tolerance region if it is a (predictive) S-confidence re-
gion for ¥, where Y has the predictive distribution h[y|{x;}] defined
by (2.4). This is the Bayesian analogue of Paulson’s Lemma given in
Section 1 with g=1. To repeat in another way, for a particular f, we
need only find [y |{x:}] and a region S that is such that

2.5) Pr(¥eS)=| hlyl(xdldy=5.

We summarize the above results in the following lemma.
LEMMA 2.1. If on the basis of observed data {x}, a predictive g-
confidence region S=S({x.}) is constructed such that

(2.6) [, k| xh1dy=p

where the predictive distribution is given by (2.4), and if C[S] s the
coverage of S, that is

@7 CISI1=ClSGa, -+ x1=| fw|0)dy

where f is the common distribution of the independent random variables,
X, -+, X., Y, then the posterior expectation of C[S] is B, that is S 1s
of B-expectation.

(The proof is simple and utilizes relations (2.3) and (2.6).)

3. Sampling from the k-variate normal

We suppose in this section that sampling is from the k-variate nor-
mal N(g, %), whose distribution is given by

@1)  f(x|pm H)=2n) | 3 M exp —%(x—p)'r-*(x—m} ,

where g is (kx1) and ¥ is a' (kxk) symmetric positive definite matrix.
It is convenient to work with the set of parameters (g, ¥~!) here, and
accordingly, suppose that the prior for this situation is the conJugate
prior or Raiffa and Schlaifer given by



72 IRWIN GUTTMAN

(3:2)  Plp, I )dpd ™ oc] 3 [rembr

- exp {—% tr S"[(no—1)Vo+no(ﬂ—io)(p—io)’]} dpd2™!
where X, is a (kx1) vector of known constants and V, is a (kX k) sym-
metric positive definite matrix of known constants*. It is to be noted
that if n, tends to 0 and (n,—1)V, tends to the zero matrix, then 3.2)

tends to the “in-ignorance” prior advocated by Geisser [2] and Geisser
and Cornfield [3], viz

(8.8) (g, zv-l)dﬂdr—l oc| -1 [~ +0rg g 31

Now it is easy to see that if » independent observations X, are taken
from (3.1), and we observe {X,} to be {x;}, that the likelihood function
is given by

(3.4) g, 27| {x}]=@2x) ™" | E1
- exp {——%— tr 27 [(n— 1)V+n(i—ﬂ)(f—.u)']}

where
x=n"! é X;
and
(n—1)V=3] (x—F)(x— 5 .

(the abbreviation “tr A” stands for the trace of the matrix 4.) Now
combining (3.2) and (3.4) using Bayes’ Theorem gives us that the pos-
terior of (g, X£7!) is such that

(3.5) p[y, Xt I {xi}] oc | P! I(n+no—k—])/2
exp [~ tr Vit (n— 1V

+no(p—-J_co)(ﬂ—io)’+n(#—i)(p—i)’]} .

Now the exponent of (8.5) may be written in simplified form on “com-
pleting the square” in g, that is, the term in square brackets in the
exponent of (3.5) may be written, after some algebra, as

(3.6) (n+n) (u—X) (e — %) +(n,—1)Vy+(n—1)V+R

* We are in effect saying that our prior information on p and X-1 is such that we
expect ¢ to be Xo, with dispersion, that is, variance co-variance matrix of #, to be (no—1)Vo/
[70(r0—k —2)], and that we expect 3! to be Vi1 etc.
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where

3.7 X =(n+ 1) " (neXe +1X)

and

(8.72) R=nX¥+nX%X—(n+ny)(x¥)= n’;”;@ (F—%) (X—%) -

Hence, we may now write (3.5) as follows:
(3.8) Pl 27| {x))=c| 27 [sromson

- exp {—% [tr 27'Q+(n,+n) (ﬂ—i)'l'"(#—i)]}
where

(3.8a) Q=m—1)Vi+m—1)V+_""_(z—%)(Z—%) ,
n+n

and ¢ is the normalizing constant necessary to make (3.8) a density, that
is, integrate to 1. Now to determine ¢, we first integrate with respect
to g and then X!, and in so doing, we make use of the identities de-
rived from the k-variate normal and k-order Wishart distributions, viz

@9) || exp |- Lig—ayN-—aN}dy=(2nr N 2

(3.9b) S . S | H |+ exp (—% tr M“H)dH
=2mk/2n.k(k—l)/4 I M lm/2 ﬁ I"[(m+ 1_1:)/2] .
i=1
As is easily verified, performing the integration yields
(8.10) c=(n+m)| QI(n+n°—l)/2/2k(n+no)/2n.k(k+l)/4 ‘ﬁ' T'(n4+m,—1)/2] .
i=1
We are now in the position of being able to find the predictive
density of a future observation Y, conditional on x. The first factor
of the integrand of (2.4) has functional form (3.1), and the second factor
is given by (3.8). Hence, we find that the predictive distribution of Y
is given by
(3.11) hly | {xi)]—_—S. .. SS . S (2r) k2 | Xt |ntngiore
. exp {—% tr z‘-‘[Q+W]dpdr—1}

where ¢ is given by (3.10), Q by (3.8a), and where W is such that
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(3.12) W=(n+m)(u—%)(p—X) +(u—y)(u—y) .
Again “completing the square” in g in (3.12), we easily, but tediously,
find that

(3.13) W=(n+’no+1)(p—ﬁ)(p—ﬁ)’+7bi—:z°—l(y—i)(y—i)’

with
y=n+n+1)"[(n+n)x+y] .
The integration with respect to g in (3.11), using (3.9a), gives us

(3.14) Rly|{x}1= S - S e(n+n+1)"42 | 31 [r+ne=k=1/2

. exp {—% tr Z‘"[Q+—ﬁ%(y—i)(y—i)']}d£" .

Integrating (3.14) with the help of (3.9b), and substituting for the value
of ¢ given by (3.10), we find that

(e | L0 4m)/2)| Q1
(3.15) h[yl{xt}]—<n +n0+1) IP*’T[(n+mn,—k)/2]

. I ,n+,no i = ey =(n+ng)/2 )
|+ - -

Now using the identity (proved in the appendix)
(3.16) |1.,—AB|=|I,—BA|

where A is (n;Xn,) and B is (n,Xn,), we have the result that the pre-
dictive density of Y is given by

3.17) h[yl{xd]:( n+mn, )k/2F[(n+no)/2][Q-1|1/2

n+n+1 I *ri(n+n,—k)/2]
< (14— n+1, =Yt _=>_(n+n°m
(At 2@ w-5)

that is, we have the interesting result that the predictive distribution
of ¥, given {x}, is related to the k-variate t-distribution, degrees of
freedom (n+m,—k). As may be seen from properties of the multivari-
ate-t (see, for example, Tiao and Guttman [8]), we have that

3.18 _TMt? oy QY —F)=—F
(3.18) n+n.,+1( X)Q(Y—X%) par—"”

k,ntnyg—k ¢

Suppose now that we are interested in the “central ” 1008 % of the
normal distribution (8.1), that is, in the set
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(3.19) A'={y|—p) I W— =015}

where 2%, , is the point exceeded with probability (1—p8) when using
the chi-square distribution with k& degrees of freedom. Given x# and ¥
or (g, 2™'), we have that

(3.20) P(YeA*|u, X)=58

that is, if we knew (g, X), A* would be a 1008 % predictive region for
Y. Now since we don’t know (g, ¥), we use as an estimator of the
density (8.1), the density (3.17), after observing the data {x,}. Hence,
a sensible predictive region for Y is the central ellipsoidal region of
(8.17), namely the region

(3.21)  S(x;,- -y xa) = 1y|ﬁ%l—(y—i)’[Q/(nﬁn—k)]“(y—i)

-S— ka,n+n0—k; l—ﬂ}

and it is easy to see, from (3.18), that
(3.22) P(YeS|{x:})=8.

Thus, by Lemma 2.1, we have that S defined by (3.21) is a tolerance
region of (posterior) S-expectation.

We note that if n,=0 and (n,—1)V, is the zero matrix, that is, if the
so-called “in-ignorance ” prior given by (8.3) is the appropriate prior, then
the above results imply that the S-expectation region is of the form

(3.23) S({x}) ={y|——(y—%)[(n—1)V/(n—k)] " (y— %) <kFy,n_:1-s
n+1

which is interesting, since this latter result is in agreement with the
sampling theory result (1.6), as may be easily verified.

It is to be finally remarked, that the lemma of Section 2 is quite
general and may be used when sampling is from any population. In
fact, the case of the single exponential is discussed in Guttman [5].

Appendix

We give a proof, due to George Tiao, of (3.16). Consider the matrix
equations (A is (n,Xn;) and B is (n;Xmn,))

L, all5ni-a] [, o

(A.1) =
BIL || 0 I B I,—BA
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and

LiallL o I,—AB A
(A.2) = .

Now taking determinants of both sides of (A.1) and (A.2) yields

IMI'lInlllIﬂgl:[IﬂlllI"z—BAI

(A.3) and
|M|-|L, || L,|=|I,—AB|-|L,]|
where
Ll A
M=| -]
B L,

Using (A.3) we have the result

|I,—AB|=|I,—BA|=|M]| .
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