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Summary

Existences and expressions of minimax estimators based on prior
information for the optimum decomposition of a given sample space are
studied in a unifying way such that answers can be easily obtained by
applying the theorems given in this paper to various statistical problems—
optimum selection regions, tolerance regions, prediction regions, optimum
stratifications and so on.

Further, s-approximations to those estimators are given by choosing
a finite family of probability measures from the infinite family of them
under consideration in such a way that the former may be considered
to be a sufficiently good approximation to the latter in the sense of risk
function. '

Besides, those estimators are proved to be consistent in the sense
that the risk decreases to zero as the amount of prior information in-
creases infinitely.

1. Introduction

Those statistical problems cited at the end of the summary may be
considered as ones in which some optimum decompositions of given sam-
ple spaces are to be searched for in order to minimize losses (or maxi-
mize gains) suitably defined under some constraints.

Let X be a sample space to which a o-field 2 and certain nonneg-
ative o-finite measures v are given, and let X be a random variable in
X subject to a probability measure P (unknown) among a family %P, of
probability measures suitably defined in advance. Here v may be taken
for P or the product measure P’y,, where y, is a certain nonnegative
measure and P’ is an induced measure by P.

A vector-valued measurable function ¢=(¢,, ¢,, -+, ¢,) defined on
X is called an l-decomposition of ¥ if it satisfies the relation
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L.1)  Ze@=1, 0s@s1,

We shall denote the set of all such functions ¢ by @, and its subset of
all functions ¢ satisfying some given constraints C by @(C). Further
we shall call a vector-valued function ¢r,=(gp;,: -, ¢»,) “an optimum I-
decomposition of X for P(€ P;) among &(C)” if it attains the infimum
(or supremum) of a certain real-valued function (¢, P) for a fixed P in
P, when ¢ varies among @(C).

For example, in the optimum stratification problem v(¢, P) may be
the variance of the stratified estimator of the population mean under
a stratification ¢, and in the classification problem w(¢, P) may be the
probability of misclassification due to a classification ¢ when P is the
true probability measure among P,.

It should be noted here that @(C) may be identical to @ when no
restriction is imposed upon the problem under consideration as in the
case of optimum stratification.

If the true probability distribution P of the random variable X un-
der consideration is known, then we could obtain an optimal decomposi-
tion ¢, for P among &(C), which is not necessarily uniquely determined.
Since the true P is not known in general, we have considered Bayes
or minimax solutions among @(C) according to whether there is given
an a priori distribution & over &, or not.

Now, let us consider the case where neither true distribution P nor
a priori distribution ¢ is known but prior information S is given. In

this case we could expect to get a better minimax estimator ¢ of ¢
with consistency property in the sense of risk by the fact that the prob-
ability distribution of prior information S may play an important role
in taking the expectation of the loss function defined below as if it were

an a priori distribution over the family ;. Here we consider the set @(C)
of all measurable mappings qi from & to &(C) which can be expressed

by a jointly measurable vector-valued function

#(, 8)=(dy(, 8), - -, d(x, 8))

defined on the product space X’ XS satisfying the restriction C for any
fixed 8, where & denotes the space of prior information S. Here &(C)
and &(C) may be considered as an action space and a space of decision

functions respectively. If we take up a ng(a:, s) instead of an optimum
¢p for true P, then the nonnegative additional loss

1.2) L($, P)=v(¢, P)—v(¢», P)

will be caused and must be added to the minimum loss v(¢», P). There-
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fore L(qg, P) may be considered as a suitable measure for representing
the deviation of ¢ from the optimum op.
Further let us define the risk function T(q;, P) by the relation

(1.3) (¢, P)=E{L($, P)},
where expectation should be taken over the space § of prior informa-
tion (see Section 3). Under fairly general assumptions we should search
for the minimax estimator ¢ of ¢, among ®(C) such that
(1.4) sup #(4, P)= inf sup 7, P),

Pe P, ; 4‘5\6@(0) Pe,
where supremum should be taken among the family &, and infimum

should be taken among &(C).

The main objects of this paper (Sections 4-5) lies first in showing
the existence of a minimax estimator q;among @(C) under fairly general
conditions imposed upon the family %,, and second in obtaing the ex-
pression of g? However, we shall show existence and expression of a
Bayes estimator ;55 with respect to a given a priori probability measure
¢ over @, in order to show that the minimax estimator ¢ can be ob-
tained as the limit of a sequence of Bayes estimator {¢.} in the sense
of the risk function where the sequence {¢;} of a priori probability meas-
ures should be suitably chosen (see Sections 4-5).

Further, e-approximations g;e. and ¢, for gZe and ¢ will respectively,
be given by using a finite number of representative probability measures
P, suitably chosen from elements in the e-covering of &, such that

(1.5) | (e, ) —7(de, &) |Ze,

and

(1.6) sup 7(¢., P)— sup r(¢, P)|<e,
Pe &P, Pe P

where &, is the induced probability measure on . by ¢ (see Section 6).
Weak consistency of a Bayes estimator q@e and a minimax estimator

¢ will be shown (in Section 7). Finally, we shall show how our theory
can be specialized to various statistical problems to search for the opti-
mum regions (see Section 8), and give proofs of all the lemmas in the
first eight sections (in Section 9).

The first half of this paper, from the beginning to Section 5, is in-
cluded in the foregoing paper submited to the Review of the I.S.I.,
though only a formulation of the problem and main theorems without
proofs are stated there.
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So we intend to give proofs to the theorems and add some state-
ments of consistencies and e-approximation methods in the second half
of this paper.

We shall publish succeeding papers in the near future, with the
following results:

1) Constructions of qg, ¢ and ¢, in some practical situations.

2) Constructions of e-approximations to them when the family P, of
distribution functions is totally bounded in some sense.

3) Asymptotic behaviors (the speed of convergence on consistencies) of
them when the size of prior information becomes sufficiently large.

4) Specializations in detail of the main theorems to selection regions,
tolerance regions, statistical prediction regions, optimum stratifica-
tions and so on.

2. Formulation of the problem
First we define the function »(¢, P) in the following way :

(2.1) v(¢, P)=h[$(¢, P)] ,

where h(z) is a real-valued function defined on a convex set %, in the
(kxl)-matrix space 2, the (i, j)th element of ¢(¢, P) is defined by

(2.2) sbij(sﬁ,P)=ngi(w)¢,(x)dP(x), G=1,+-,k, j=1,-+-,1)

and g=(g,, -, g:) is a given vector-valued function on ¥ and integrable
with respect to any Pe P,.
The restriction C may be defined by the inequality*

(2.3) (¢)<C (or =C),

where C is a given matrix in &, and the (4, 7)th element of 7(¢) is de-
fined by

@4 @)=, @ @ike), (=1, m; j=1,00,0)

and f=(fi, -+, f.) is a given vector-valued function on ¥ and inte-
grable with respect to v and P in &,.
We assume that

P(C)={p:4€?, o(¢)=C (or =C)}

is nonempty throughout this paper. An optimum [-decomposition ¢,

* This inequality should be interpreted in the componentwise sense:
Tif(¢)§cij (i=1""»m; j=1»"'9l)-
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for Pe &, is one which attains inf {v(¢, P); ¢ € #(C)}. @(C) may be
taken for an action space in decision theory. '
The loss function is defined by

(2.5) L(¢, P)=v(¢, P)—v(¢r, P) .

There a decision function is defined as a separably-valued and weak
B-measurable mapping* from the space of prior informations (S, $) into
O(C), where B is a o-field given to S and Q-=Q(-|P) is a probability
measure on (S, B) induced by P when P is true among <,. Besides,
the family of all such probability measure Q,’s is denoted by Q,.

For instance, Q, may be taken for the mnth product measure of P
if prior information is obtained as the (first) sample (x,,---, x,) of size
n distributed independently and identically according to the probability
measure P.

A decision function gi; can be expressed by a U X B-measurable vector
valued function ¢(z, s):(gil(x, 8),+ -+, ¢, 8)) on the product space ¥ XS
such that

(2.6) $,(x, 8)=0 géj(x, =1 (G=1,2,---,10)

(see Proposition 1 in Section 9, Appendix). The space of all such gzg(x, s)

is denoted by &, and &(C) is the subspace which satisfies the restric-
tion

(2.7) “(g(w, ))=C .
The risk function r(;?s, P) defined by (1.8) may be expressed ex-
plicitly as
(2.8) "¢, P)=\; LG, P)@s
= (g6, P1-hIp(sr, PYIIRQ, .
The main object of this paper lies in obtaining a minimax estimator
¢ which attains

(2.9) inf sup 7(¢, P)
55& & Pep

under the restriction (2.7). However we shall state how to obtain Bayes
estimators for a certain family of all possible a priori probability meas-

* Let (S, 8, m) be a measure space, and x(s) a mapping from S to a B-space 4. x(s)
is called weakly B-measurable if for any f € Y*, the numerical function f(x(s)) of s is B-
measurable.
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ures, and then how the minimax estimator ;z; may be expressed as the
limit of a sequence of Bayes estimators corresponding to a sequence of
a priori probability measures suitably chosen from the family of a priori

probability measures. Let C be a o-field over {(P, Qr); Pe Py}, and
£ the family of all possible a priori probability measure &’s over ({(P,

Q:)}, ). Then, to each £¢ 5 there corresponds a Bayes estimator 935 €
&(C) which attains the infimum of

(2.10) (4, e)=S - (¢, P)d¢

(P, Q,

under the restriction (2.7).

In the following sections we use the notation (2;, C) for ({P, Qs}, C)
for the sake of convenience when we consider a priori probability meas-
ures which should be distinguished from ones defined by the usual for-
mulation.

Further we shall state some properties of those Bayes estimators
which may be useful in showing properties of the minimax estimator.

3. Existence and expression of an optimum decomposition @»

At first we show the existence of an optimum decomposition ¢, which
attains inf (¢, P), under the following assumption.
e d(C)

ASSUMPTION 1. The o-field A over ¥ has a countable number of
generators.

THEOREM 3.1 (Existence of an optimum decomposition). Under As-
sumption 1, there exists an optimum [-decomposition ¢, for any fixed
P in P, which attains the infimum of w($, P) defined by (2.1) among
&(C), if the function h is lower semicontinuous on Z,.

Further, under the additional condition that h is concave on Z,, ¢p
becomes explicitly expressible.

PROOF. We can find a probability measure P, on (¥, 2) with respect
to which v is absolutely continuous. Then we define a probability meas-
ure P* on (X, A) for Pe P, by

(3.1) : PX¥E)=(P(E)+Py(E))/2 for Ee?.

Now we introduce a topology into &, called P*-weak topology, in
the sense of weak convergence, namely é.,—g¢q (r— o) if for every
P*-integrable function f on X,

(3.2) Sf¢(r>dP* i S foodP* (r—oo).



MINIMAX ESTIMATION METHOD FOR THE OPTIMUM DECOMPOSITION 7

@ is proved to be compact for this topology as shown in the case
of test functions (see Lehmann [7], Appendix). Also as for this topol-
ogy, 7(¢)—C is a continuous mapping from @ into &,, and (¢, P) a real-
valued lower semicontinuous function. Hence @(C) is the image of a
compact set in &, by the continuous function, and so @(C) is also com-
pact. Then there exists a ¢, in @(C) which attains the infimum of the
lower semicontinuous function ¥(¢, P). In order to find the explicit form
of ¢p, let us see the relation
3.3) inf (¢, P)= inf J(¢, P),

¢ €9(C) $e(C)
given by Lemma 8.1 which is stated after this theorem. Then apply-
ing Isii’s theorem (see [5], Theorem 2.2) to this case, we obtain

(3.4) inf Jig, P)= sup _inf {J(g, P)+ TIC—2(d)]},
ded(C) TeZt [ X3

where &; stands for a subset of the conjugate space ZF of %, such
that

(8.5) Zi={T; TeZ&f, T(2)=0 for 2=0}.
Expanding the right-hand side of (3.4) by Lemma 3.1, we have

3.6) inf Jig, P)= swp_ inf [qus,{z a,(P¥)g,
¢ e®(C)

(bi)eZ ped dP*

~S b, }dp*+ >3 bt,C,,] ,

ap*

where b,, is the (7, j)th coefficient shown below, in the linear expression
T(@)= 2 b.;2.,;, and a,,(P*) is the constant given by Lemma 3.1. Thus

we obtam #» with the following expression; for Pe P, there exist
a;(P*) and b,,(P*) except for a set of P*-measure zero,

1 for w,[x; P, ai,(P*), b,(P*)]
> sup. w,[x; P, a;(P*), b;(P*)]

@D 0=V 0 for wyw; P, a,,:P*), by,(P*)]
< sup w,[w; P, a(P*), by(P*)]
raf
(.7—19 2) ":l) ’
where w, is given so that
(3.8) w,[x; P, a,,(P*), bi,(P*)]

_2 b, (P*)fi(x) ¢2 a,(P*)g(x) ==— dP* GG=1,2,---,0,

dP*
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and a;,(P*) and b,(P*) depend only on P*,

COROLLARY 3.1. If h is continuous and linear on %,, namely there
exists a constant a;; (i=1,---,k; j=1,---,1) such that

(3.9 ' h(z)=§ QijRiy Sor z=(z,;) € Z,,

a;;(P*) in (3.8) can be replaced for this a,; which does not depend on P*.

Hence (3.7) with (3.8) becomes a necessary and sufficient condition
that ¢, € @(C) be an optimum decomposition.

LEMMA 3.1. If h is lower semicontinuous and concave on %,, there
exists [a,;(P)] € Z for a optimum decomposition ¢, € &(C) such that ¢
attains i%fc') J(p, P) for a fixed Pe P,, where

de

(3.10) J($, P)=%} a;(P)pi(¢, P)  for €@, PeP,.

Further, if ¢° € ®(C) different from ¢, attains the infimum of J(¢, P)
for a fived Pe Py, ¢" is also an optimum decomposition for this P.

4. Existence and expression of a Bayes estimator

If an a priori distribution & on (&£, C) is known, where C is a given

o-field on P,, we expect to get a Bayes estimator qge € (5(0) with respect
to ¢ which attains the infimum of the Bayes risk

@) 6 €)=\ g, 16, Pz,
under the restriction
(4.2) 2($)<C  (or=C).

In order to get such an estimator we make the following assump-
tions.

ASSUMPTION 1’. The o-field A over X and B over S each have a
countable number of generators.

ASSUMPTION 2. The o-field C over &, has the following two proper-
ties:

1) P(D) and Qy(F) are C-measurable as real-valued functions of P in
P, for any fixed set D in ™A and E in B, where B is a certain o-
field over .

2) Each component ¢p,(x) of the optimum [-decomposition ¢,(x) is A x C-
measurable (5=1,---,1).
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AssuMPTION 3. The family %, and Q,={Q»; P € P,} are dominated
respectively by certain nonnegative o-finite measures # and A.

THEOREM 4.1 (Ewistence of a Bayes estimator). Let & be an a priort
probability measure over (P, C). If the fumction h(z) is continuous on
%, and h[SEg’(x)-dP(x)] 18 &-integrable as a function of P im P, for

any fixed set E in U, there exists a Bayes estimator ngSe m q?(C) under
Assumptions 1', 2 and 3.

Especially, if h(z) is continuous and linear on %, and v=P in P,
the same assertion as above holds only under Assumptions 1’ and 2.

PrROOF. In the expression
(4.3) 76, 8=\ 5 | 96, Pisde—{, o, Pz,

the second term of the right-hand side does not depend on 936 (15(0), SO
it suffices to consider the infimum of the first one

(.4 #@={, | v Pz .
Further,
(4.5) g, P)= ; o4, P1aQ;

is &-integrable by Assumption 2 and the conditions on A.

We can suppose that g and A in Assumption 3 are absolute con-
tinuous with respect to certain probability measures P, and Q,, respec-
tively. Now we define a new probability measure P* on (¥, 2U) by

(4.6) P¥E)=[P(E)+P(E)]/2 for Ec¥,

where P, is the probability measure defined in the proof of Theorem
3.1. Then on &, P*xQ,-weak topology can be introduced just like as
P*-weak topology on @ in the proof of Theorem 3.1. u(qz, P) is conti-
nuous in ¢e & for each fixed Pe P, with respect to this P*le-weak
topology. r(¢) is also continuous.

Since (D(C) is compact, there exists a qgé #(C) which attains

(4.7) 3(P)= sup |u(g, P)|.
9 € ¥(C)

Therefore 3(P) is also ¢-integrable. If ﬁ(r,aﬁ(o) (r—o0), it is seen by
Lebesgue’s convergence theorem that
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ﬁ(ng)—"’—l:((;;an) (r—o0),

namely 7(¢) is continuous in ¢ € #(C). Hence we can see that there exists
a ¢ € &(C) which attains inf w(g).
$ed(C)

If, in particular, h is linear, then defining a probability measure P
on (XS, UAXB) by

4.8) 1"9(197):591 mﬂ deQp}de for E€AX DB,

and introducing P-weak topology on ®, we can show that ﬁ(qg) and z-(gi)
are continuous with respect to this topology. So, it is easily seen that

there exists a ;55 € qﬁ(C) in this case. Thus the proof is completed.
The following lemma is necessary to give an expression of a Bayes
estimator.

LEMMA 4.1. Suppose that h 18 concave and continuously differenti-
able on &, so that N [SE g(a,-)dp] is E-integrable as a function of P ¢ P,

ZU

for each fixed E € A, under Assumptions 1’, 2 and 8. Then for a Bayes
estimator ¢Aé € é(C), there exists a C-measurable ai(P) so that q;e at-
tains inf r,e(q;, P), where

ed(C)

¢ e
4.9) rué P)=\ 4 | s Ui, P)=J6., PIaQrde
and
(4.10) Jd$, P)=5 ai{(P)g.($, P) .

Further, if another 9§°6@(C) attains _inf 'r,é(qg, é), q3° s also a
$ed(C)
a Bayes estimator.
THEOREM 4.2 (Explicit expression of a Bayes estimator). Under

Assumptions 1', 2 and 3, the Bayes estimator 935 wm ¢(C) for & becomes
explicitly expressible if the function h(z) is concave and continuously
differentiable with respect to each componment z,; of z€ Z,.

PROOF. At first we give a proof in the case where h is continuous
and linear, namely

(4.11) h(Z)=§ a,;jzu for Z=(Z¢j) € Zl .

Then, introducing a P*-weak topology on & as is defined in the proof
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of Theorem 4.1, we can find a 9355 @(C) just as qip in Corollary 3.1.

Namely 9; € (ﬁ(C) is a Bayes estimator, if and only if there exists
Q,-integrable x,,(s) such that except for a set of P*X@Q,-measure zero,

1 for 'Zl\)j(xy s; aij, ”ij(s))

>1s;13£z w,(x, s; a;j, 7:“(8))
412) bz, 8)= ™
(4.12) =, 5) 0  for w,(x, s; ay, m,(s))

< sup W,(x, 8; Ay, 7,(8))
125t

(3=1,---,1,
where
(4.13) W,(x, 8; ay, 74(8))
=3 dv_ _dQr
=3[, oS0 e-az(p)
-3 dP dQ, L
izzl 89’1 ai;94%) dPF dO, d&(P) G=1,---,0.

If h is concave on &, by Lemma 4.1 the same method as in the

linear case can be applied to finding ée,by using r,e(gﬁ, ¢) instead of 'r(gi;, ).
However, in this case, a,; must be replaced by a;(P) which depends on

., so (4.12) becomes only a necessary condition.

5. Existence and expression of a minimax estimator ¢

In general, it is uncertain whether we can expect to get an a priori
probability measure £ such as in Section 4. Therefore it may be consid-

ered, in our case, to find a minimax estimator ¢ ¢ #(C) which attains
(5.1) inf sup r($, P)

ped Pe Py
under the restriction

(5.2) ($=C (or =C).

In this section we show the existence of such a ¢ ¢ &(C) and its expres-
sion as the limit of a sequence of Bayes solutions for a priori probability
measures selected suitably the supports of which are finite subsets in £,.

At first we show the following lemmas as extensions of Isii’s theo-
rem (see [6], Theorem 3) in a sense.

LEMMA 5.1. Let U,, €V, be nonempty subsets in U, €V, respectively,
and let 5 be the family of probability measures on €1/, whose supports
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are finite subsets in V. If K(u,v) is a redl-valued Sunction defined
on UyXv, and define

(5.3) K, )=\, Ko, 0ds  for ue U, £es,.

Then we have

(5.4) inf sup K(u,v)= inf sup K(u,¢).
ueUy veYy ueUy Ee&

Here, if there exists u, € U, which attains the infimum of the right-hand
side, this u, also attains the infimum of the left.
Further, when U is a linear space, U, a convex subset in U, suppose
that K(u, v) satisfies the following conditions:
1°) A certain topology can be introduced into U, such that U, is com-
pact and K(u, v) is lower semicontinuous in u for each fizxed v with
respect to it.
2°) K(u, v) 18 a convex function of u for each fixed v.
Then we have '
(5.5) inf sup K(u,v)=sup inf K(u,§¢).
ueUpy veV, EeSyueU,
Further unless the left-hand side of (5.5) is + co under 1°), 2°), there
exists a minimax w, € U, which attains this infimum.

LEMMA 5.2. Let U,, €V, be the sets given in Lemma 5.1 and
K(u, v) a real-valued fumction on U,X<V,, such that there exists a mini-

max u, € Uy which attains inf sup K(u,v). Further, suppose that a
ueUy veCVy

ofield W, attached to CVy, and a family E of probability measures on
(s, W) are given so that
3°) for each fixed uw e U

(5.6) sup K(u, v)<sup K(u, &),
veCY, Eel
and 4°)
6.7 inf sup K(u, §)=sup inf K(u,¢),
ueUy Ees Eef ueUp

where K(u, §) is defined by (5.3). Then there exists a countable subset
E,C 5 such that the mimimax u, 18 a Bayes solution in the wide sense
Jor &,.

Under the foregoing preparations, we show the existence of a mini-
max estimator qASE . Necessary assumptions are as follows.

ASSUMPTION 4. A certain topology can be introduced into 2, so
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that <, is separable and S s 'v(ng, P)dQ, is a real-valued continuous func-
tion in Pe P, for each fixed ¢ € #(C) with respect to that topology.

ASSUMPTION 4’. A certain pseudo-metric p can be introduced into
P, so that P, is totally bounded, and the family {S v(qli\, P)dQ5; q; €

@(C)} is equi-continuous in P with respect to p.

THEOREM 5.1 (Ewistence of a minimax estimator). Assume that
Assumptions 1' and 4 in the case where h is lower semicontinuous and
convex on %,, or Assumptions 1' and 4' in the case where h is con-
tinuous and not convex, are satisfied. Let 5, be the family of all a priori
probability measures whose supports are finite subsets in P,. Then the
following assertions hold ;
1°)

(5.8) inf sup r(¢, P)= inf sup (¢, &)
ded(C) Pc P, ped(C) e

=sup inf (4,9).
§eg ged(C)

2°) Especially if R inf sup 'r(q;, P)< oo, there exists a minimax esti-
ped(C) Pe Py
mator ¢ € ®(C) which attains the left-hand side of (5.8).
3°) Selecting a countable subset 5E,C 5, the minimazx estimator gZ may be
expressed as a Bayes solution in the wide sense for =,;.

PROOF. Let P, be a family of a countable number- of generators
for P, under Assumption 4 (or 4'). Then we have

(5.9) inf sup 7(¢, P)= inf sup 7(¢, P),
ded(C) Pe P, $ed(C) Pe Py

and ﬁoeé(C) which attains the infimum of the right-hand side of (5.9)
attains the infimum of the left-hand side. Hence we can assume, that
P, itself is countable from the beginning. Then, since &; and Q, must
be dominated by certain probability measures P, and Q, respectively, the

P*xQ,-weak topology is introduced into & so that (f)(C) is compact with
respect to this topology as shown in the proof of Theorem 4.1. There-

fore, if h is convex and semicontinuous on %,, taking u, v for q;, P and
K(u, v) for r(q;, P) respectively, we can see that the conditions in Lemma
5.1 are satisfied, since r(q?, P) is semicontinuous in q§ for each fixed P
by Lebesgue-Fatou’s lemma. Thus, applying this relation and Lemma
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5.2, we can see easily that assertions of the theorem follow in the pre-
sent case.

If b is not convex but continuous, under Assumption 4’, for any
¢>0 there exist d(c)>0 and a d(c)-covering {P, ,; ¢=1, 2, - -, m(e)} such
that {P,, P, e L., (¢=1, 2,---, m(c))} implies

(5.10) | u(¢, P)—u(g, P,)|<e  for all ¢ed(C),
where '

? _ £ dQp
(5.11) wg, P)=|; g, P92 dq. .

Since for each fixed P¢ &, we can take out a certain P, , including
P, there exists 7(c) such that »=7y(c) implies

(5.12) sup | w(ber, P ) — b, P.g)|<e,

1sgsm(8)

if ¢§m_>9§(0, (r— o0) with respect to the P*xQ,-weak topology. We can
see (5.12) holds since A is continuous on &,. By (5.10) and (5.12), we have

(5.13) | 4(@rr» P)—uldas, P)|
<|Wbers P)=ulerrs Pe,o) |+ wders, Pr.p)
— Wb Peg) |+ s, Prd) —u(dw, P)|
<3e.

Therefore, the inequality
(5.14) I"'(ﬁ(r), P)_'r(é(o)y‘P) [<3e

holds for r=7u(c) and for any Pe ,. Thus we see that sug r(qf, P)
PeP,

is a continuous function of 95 € @(C). Therefore, since (5(0) is compact,

there exists a minimax estimator ¢ ¢ @(C) which attains inf sup 'r(¢?, P).
gedC) Pe P,

In this case, Lemma 5.1 also implies the first equality in (5.8).

As for the second equality in (5.8), it suffices to apply Wald’s theorem

(see [10], Theorem 2.2). Thus the proof of the theorem is completed.

COROLLARY 5.1 (Ezpression of a minimax estimator). Under the

assumptions in Theorem 5.1, the minimax estimator ¢ can be repre-
sented as the limit of a certain sequemce of Bayes estimators {#e,} in
the sense of risk function, 1i.e.,

(5.15) sup (g, P)=kim r(ds;, &) ,
Pe P, f—oo

where the sequence {§.} of a priori probability measures should be suitably
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chosen and each &, has a finite support on P;.

PrOOF. Let 5, be the family of probability measures of which sup-
ports are finite subsets in ;. Then by Theorem 5.1 we have

(5.16) sup 7(¢, P)=sup inf (4, ¢&)
Pe P, gef ded(C)
= sup (¢, &) .
£es

Hence we can select &’s from £, such that (5.15) holds.

Remark 5.1. Tt should be noted that Assumption 4 is weaker than
Assumption 4’ but the latter is more easily applicable.

Further, in proving the existence of q; in é(C) in Theorem 5.1,
it suffices to assume that for any ¢>0 there exist d(¢)>0 and a d(c)-
covering composed of a countable number of elements even though &P,
is not totally bounded. Total boundedness of &, is needed only in
proving the second equality in (5.8) by Wald’s theorem. '

6. e-approximations for a Bayes estimator and a minimax estimator

In Sections 4 and 5 we have studied existence and expressions of
Bayes and minimax estimators. However, if the structure of h is com-
plicated, it is not so easy to find explicit forms of those estimators in
practice. In such a case, suppose that we could select a finite system
P,={P,,--+, P,} from P, as a representative of &, such that Bayes
estimators and minimax estimators under the assumption that the true
Pis in P, instead of P, are approximations of those under the assump-
tion that the true P is in ©,. Then the problem becomes rather easy
because it suffices to treat only a finite number of objects if there is
no necessity for respecting exactness.

In this section we show an e-approximation method for those esti-
mators by considering an e-covering on &, under Assumption 4’ used
in proving Theorem 5.1.

Now let us put

(6.1) g, P)= o4, P)iq: .

Then, under Assumption 4’, for any positive ¢ there exist d(¢)>0 and
d(e)-covering {P. ,.: ¢=1,2,---, m(e)} such that P,, P, € P, , implies

(6.2) |u(¢, P.)—ul(d, P,)|<e  for all ¢€d(C)
(q=1v 2" %y m(e)) .
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Taking P, , from each P, , respectively as a representative, we fix a
d(c)-net P, ={P,,: ¢=1,2,---, m(c)} throughout this section.

For a given a priori probability measure ¢ on (P,, C), we define a
discrete a priori probability measure &, by

(63) és(Pe,q):e(g)e.q) (q:]-v 2’ ) m(e)) ’
which has masses only on &.. Then we have the following theorem.

THEOREM 6.1 (s-approzimation to a Bayes estimator). If h is con-
tinuous on Z,, under Assumptions 1, 2 and 4’, there exists a Bayes

estimator ¢, € @(C) for &. defined by (6.3) such that
(6.4) |7, £)—7(de, &) e,
.. Slge, 18 an s-approximation to the Bayes estimator gz;e Jor &.

PrOOF. At first we define a probability measure P, on (¥, A) and
Q. on (S, B) by

(6.5) dP, =;[M§)dp +dPo],
T ome)+1 Ll ot
(6.6) dQ.=—L _aq,,,
m(s) =t

where P, is defined as in the proof of Theorem 3.1. Then, introducing

the P.xQ,-weak topology into &, we can show the existence of 555‘ € é(C)

which attains inf 'r(q’;, §.) just as in the proof of Theorem 4.1. It
$ed(C)

follows from (6.2) that for every P., (¢g=1,---, m(c)), we have

(6.7 |7, P.)—r(4 P)|<e  for all ged(C), for all Pc P, .

Therefore, we have

(6.8) | 7(, £)—7($, &)
<3\ g 176 Po)—r(3, P)as
<e, for all ¢ € &(C) .

(6.8) implies
(6.9) | 7(er £)—7(de, &) |<e,

(6.10) [7(e,, &) —7(d:., &) |<e .
Thus we can get (6.4) from (6.9) and (6.10).
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THEOREM 6.2 (c-approximation to a minimax estimator). If h is
continuous on Z%,, under Assumptions 1’ and 4' there exists a mini-

max estimator yie in &(C) for P, which attains inf sup ’r(gzg, P, ),
. $ € H(C) 1=q=m(e)
such that the following properties are satisfied ;
1°) Let 5. be the family of &.’s which have masses only on P., and 535,
a Bayes solution for ¢.. Then we have

(6.11) sup (g, P.,))= sup (g, &)
1=q=m(e) g

e €&,

2°) For a minimax estimator ¢ as to P,, we have

(6.12) | sup 7(d, P..)— sup (¢, P)|<e,
1<g=<m(e) PeP

i.e. ¢ is an e-approximation to ¢

PROOF. It is easily seen that there exists such a ¢, ¢ &(C), when

we notice that sup ~(g, P, ,) is a continuous function of é € B(C) with
1sqgsm(e)

respéct to the P, Xx@;-weak topology which is defined in the proof of
Theorem 6.1.
Next Theorem 5.1 implies

(6.13) sup  7($, P.j)=sup inf ~(g,¢.)
1§q§m(5) ft € Ec 956 é(C')
(6.13") =$s1;112_ 'r(qget, &),

namely (6.11) holds. We have in the same way
(6.14) sup (¢, P)= sup (g, &)
Pe P Eekly

where 5, is the family of a priori probability measures whose supports
are finite subsets in ;. On the other hand, Theorem 6.1 implies
(6.15) sup, 7(g,, €)= sup 7(i, €)

~1

-

. eZ,

< sup (g §)+e .

g €5,
By (6.13"), (6.14) and (6.15) we see that (6.12) holds.

Remark 6.1. We assumed throughout this section that &, is totally

bounded in order to find e-approximations for 935 and q; However the
theorems in this section could be immediately extended to the case where
the original family of probability measures &, has an ¢-covering with a
countable number of elements.
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7. Weak consistency of a Bayes estimator and a minimax estimator

In the foregoing sections we have studied problems of the Bayes

estimator qgf and the minimax estimator ¢ where the size n of prior in-
formation S is fixed. In this section, we study the asymptotic proper-
ties, i.e. weak consistency, of those estimators in the sense of the risk
function as stated below. To this end, we add subscript n to the nota-
tions related to the prior information such as S™, S™, qg"", &™(C) and
S0 on.

Suppose now an a priori distribution ¢ is given on (%,,C). Then

q§<n> € (5‘"’(0) is called weakly consistent for ¢ with respect to the Bayes
risk fr(gzg, ), if

(7.1) g™, £)—0  (n—o0).

On the other hand, 55"" € é‘"’(C) is called weakly consistent on P, with
respect to the risk r(qg"", P), if

(7.2) 'r(ﬁ"", P)—0 (n— ) for each fixed Pe P, .

Especially if the convergence in (7.2) is uniform in Pe P,, ¢™ is called
uniformly weakly consistent on &, with respect to the risk. Then the
purpose of this section lies in proving the weak consistency of the

Bayes estimator qigm and the minimax estimator ¢™.

At first let us introduce some notations for convenience’ sake. Sup-
pose now a pseudo-metric d is introduced into <P,, such that for any
>0 there exists an e-covering on &,, composed of at most a countable
number of elements {P,,: ¢=1,2...}. Then selecting a representative
P, , from each 2., we fix an enet P.={P.,: ¢=1,2,---}. Corre-
sponding to . let us consider a decomposition X(s)=(X"(s), X&"3(8),- - +)
of 8™ whose components are B-measurable real-valued functions, such
that

(7'3) Xﬁ’,‘g(s)gO ’ 2 Xg’,'g(s):l (q=19 2! . ') .

q

Further, let us put

.4) pP) =| xsaQe
(7.5) O (x, ) =31 B, (EXENS) ,
(7.6) $(2) =3 6p, (@)L -

As for P, O™, S™, we assume the following assumption.
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ASSUMPTION 5. A pseudo-metric d may be introduced into &, so

that the following conditions are satisfied :

1°) For any >0 there exists an e-covering {%.,: ¢=1,2,---} compos-
ed of at most a countable number of elements.

2°) {v(¢, P); ¢ € ®(C)} is a family of equi-continuous functions of Pe &,.

3°) For any ¢ >0 there exist ¢(c)>0 and a certain e-net {P,,: P, €
Peo» 3=1,2,---} such that selecting a suitable x{(s) we can de-
termine n,(¢’) so that m=mn(c’) implies

(7.7) p pr<e  for all Pe &y,

d(}",q. P;’r)> ps

where p is a finite constant >1 which does not depend on ¢, and
P, ., is a representative such that 2., > P.

LEMMA 7.1. If h is concave and continuously differentiable on Z,,
under Assumptions 1 and 2, there exists a C-measurable a (P) (i=1,
<o,k g=1,---,1) such that for each fixed ¢ € &(C).

(7.8) J(9, P)=§ a, (P9, P)

18 C-measurable in P e P, and for each fixed P

(7.9) r(¢, P)<7r,(¢, P)  for all ¢ d(C)
~ holds, where

(7.10) 7@, P)=| (1@, P) =9, PG .

By this lemma, we can show 58" has the uniformly weak consistency
defined above:

THEOREM 7.1 (Weak consistency of ¢™). Assume that h is continu-
ous or continuously differentiable according to whether it i8 comvex or
concave. Further, assume Assumptions 1' and 5 specifying 1°) in 5 such
that according to whether the numbers of elements im e-coverings on P,
are finite (there P, is totally bounded) or countable, ¢(p, P) is a bounded
Sunction of P for each fixed ¢ € (C) or a bounded function of ¢ and P.
Then for any &>0, taking ()>0 and n(e') at 3°) in Assumption 5,
we can determine a constant K which does not depend on ¢ and P e P,
such that n=mnyc") tmplies

(7.11) Py, P)SKe  for all Pe P, .

PROOF. By Assumption 5.2°) for ¢/>0 we can take ¢>0 such that
d(P,, P,)< pe implies

(1.12)  |v(g, P)—o(g, P)|<¢'  for all e d(C) (¢=1,2,---),



20 KAZUO NODA AND YASUSHI TAGA

where p is given by Assumption 5. 3°).
At first we prove the theorem in the case where %k is convex. If
h is convex, we have by (7.4) and (7.5)

(7.13) r@, P)={ ;od, PIQP—o(g,, P)

<32 | (s, PIEIIQP—0(6,, P)
=, 3 G, P~ués, P)]

d(F, P, JIspe

,
LEL S £%

3 BGlv($s,,, P)—v(ge, P)] .

a(F, . F, > pe

As for the first term, by Assumption 5.2°), we have

(7.14) ’U(¢P"qy P)'—’v(¢}’, P)
S| udr, g P)—v(dr, 40 Peo) [+ 0(dr, o Peg) —v($r, P)|
<2/ +2=4¢ .

As for the second term, by the condition with respect to ¢(¢, P) and
continuity of 2 on 2&,, we see that there exists K’ which does not de-
pend on ¢ and Pe¢ &P, such that

(7.15) Sup | 0(gz,,,, P)—v(gr, P)|<K'.

Hence we obtain
(7.16) r(@™, P)<4¢'+K'¢  for all Pe @, ,

which also implies (7.11). o
The weak consistency of ¢, ¢™ follows from Theorem 7.1.

THEOREM 7.2 (Weak consistency of g§§"> and ¢™). Under the as-

sumptions in Theorem 7.1 and Assumption 2, the Bayes estimator ngS""
has weak consistency for a given a priori probability measure & and also

a minimax estimator 95"" has the uniformly weak comsistency on P,.

PrOOF. For any ¢>0, we take e¢(c)>0, my(e') and q?g’o such that
(7.11) in Theorem 7.1 holds. Then n=n(¢') implies

(7.17) G DS, =g, r, PIESEY

This shows that q@é"’ is weakly consistent.
As for a minimax estimator ¢™, we also have

(7.18) sup 7(¢™, P)< sup 7‘(«}3“"’, P)<K¢
Pe P PeP,
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by Theorem 7.1. This shows that 5"" is uniformly weakly consistent.

Remark 7.1. As for existence of a Bayes estimator 93?‘), if we as-

sume the assumptions in Theorem 7.1, integrability of v(qf, P) with
respect to Pe€ &P, which is a condition in the Theorem 4.1 follows from
the condition on ¢(¢, P). So, we see that Theorem 4.1 holds.

Further, we can show existence of a minimax estimator q;‘"’, if we
add the following assumption 4°) to Assumption 5.
4°) Let the size » be fixed. Then, for any ¢>0, there exists d(¢)>0
such that

(7.19) d(P,, P,)<d(c) implies SE(dQﬁg‘l’—dQ(;;))<e for all Ec¢ &,
because we have, by the above,

(7.20) | S o($, Po)d g;)—s ué, P,)dQE

={| v P04, P

Q)+

| v, P)dag —dag)
for all ¢ € &(C) .

The first term can be sufficiently small by equicontinuity of v(¢A, P) (As-
sumption 5, 2°)), and the second by 4°) since 'v(q;(x, s), P,) is a bounded
function of s € S™ for each fixed q’;E @‘"’(C) if h is continuous on %,.

Hence Assumption 5 with 4°) implies Assumption 4’ where {S v(sI;, P)ydQ$ .
q§ € qS(C )} should be equi-continuous in P¢ ;. So, we have Theorem 5.1.

8. Specializations to various problems

In this section we shall show how our theory can be applied to
various statistical problems to search for the optimum regions—the opti-
mum selection region, the statistical prediction region and the optimum
stratification. But we confine ourselves to showing the possibility of
applying our theory to them. Detailed discussions about them will be
published in other papers in the near future.

8.1. Optimum selection region

We shall state the problem according to the formulation proposed
by Cochran [1], though there have been given several different formu-
lations proposed by other researchers until now.

Let X=(X,, X;, -+, X;) be p-variate vector random variable and
its first component X, in R' be unobservable at the present time but
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observable at a certain time in the future. Let the remaining (p—1)
variables X;,---, X, in R*! be observable at the present time and be
considered as the auxiliary variables by which the optimum region should
be selected in the following way. Let us consider a family & of all
possible cylinder sets parallel to the 2X,-axis with its base in R*™! and
a given size a (0<a<1), and we are supposed to obtain an optimum
one among & in which the conditional expectation of X, should be maxi-
mized.
We can easily apply our theory to this problem as follows: let

X=R", k=m=1, =2,
f)=fix)=1, g=x)=g(x)=2,
h(2)=h(zy, 25)=—24 and #(x)=(py(), :(2))
satisfying the condition that ¢(x)=¢(z’) for any pair of x=(x,, x5, +, 2,)

and x'=(x;, %, *+, ;). Then the restriction C in the optimum selection
region may be expressed as

8.1) | SRp S(@)dP@)=a .

Further, let ¢(¢, P)=(¢:i(9, P), ¢, P)), where

0ud P)=|  0@p(@MP@)  (=1.2).

Then the conditional expectation of X, under a given selection function
¢ may be expressed as

(8.2) E(X| ) =1 [ hou(s, P), 46, PYdP@)

=—T1 Sx 2 (@)dP () ,

which should be minimized. Since —1/a is a constant, it is easily seen
that our theory can be applied to this problem.

8.2. Statistical prediction region

Let X=(Xj,---, X,) be a p-dimensional vector random variable con-
sisting of two vectors £é=(Xj,- -+, X,) and 7=(X,41, -+, X;) (g<p), where
¢ is observable at the present time but 7 is not, it will be observable
only at a certain time point in the future. We are supposed to obtain an
optimum prediction region D(§) in R?™? based upon the observation on
& such that the expected probability content of D(§) should be maxi-
mized under the restriction C that the expected volume of D(£) be equal
to a given constant C. :
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Our theory may be applied to this problem in the following way:
D(¢) may be expressed by ¢(£, p)=¢(x) and let

X=Rr, k=m=1, =2,

f@=fn)=1, g=x)=gx=1,
and h2)=h(2y, 2)=2y ,»

and du(x)=duv(&, 7)=dP'(£)-du(y) where P’ is the marginal probability
distribution of ¢ and v, is Lebesgue measure in K?7?, Then the restric-
tion C may be expressed as

8.3) [ 8@d)=C, (©€>0)

and the expected probability content corresponding to a prediction func-
tion ¢,

®4) ¥, P)= . $i(x)dP(@)
should be maximized under C.

Remark 8.1. 1) We may modify the original problem in the fol-
lowing way : under the restriction that the expected probability content
of D(¢) be equal to a given constant g (0<S<1), the expected volume
of D(¢§) should be minimized.

2) We may modify the original problem in another way: under
the restriction that the volume of D(¢) in R*? be kept as constant for
each £, the expected probability content of D(¢) should be maximized.

In this case some modifications must be done in our theory (see
Ishii [4]).

8.3. Optimum stratification

Let P be a probability measure in &, corresponding to a distribution
function F(z) (in &,) of univariate random variable X, and we are
supposed to obtain the optimum stratifications ¢, which minimizes the

variance V (X, ¢, P) of the stratified estimator X for the population
mean p among a set @ of all possible stratifications, where ¢(x)=(¢\(x),

o $u(®)),

— i — — 1
X=2 'uhX‘ N X¢=“’LEXU ’
i=1 ’n‘

i=1

8.5) w=|,, s(@)dP@),

— l
and V(X|¢)= § w; 0}

SR
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in the proportionate allocation case (n,=wmn).
Our theory may be applied to this problem in the following way :

k=2, m=0 (i.e. no restriction),
I=l, g@)=(g(x), g«x)) ,
a@)=1, g(x)=2x ,

and

hz)=—3) B

=l 2y

Then it is easily seen that the relation
(8.6) V(XIg, P)=|  adP@)+hip(s, P)

holds. So, we are supposed to study on the optimum stratification ¢,
for P which minimizes the function A[¢(¢, P)]. (See Dalenius [2], Taga
[8], and Ishii and Taga [9].)

9. Appendix

In this section we give proofs of all lemmas used in proving the
theorems in the previous sections.

9.1. Expression of a decision function q;
In Section 2 a decision function q; from (S, B) into @ is defined
as a separably-valued and weak $B-measurable mapping. This g; can be

expressed as gﬁ(x, 8) ((2.6)) and we have expanded the whole theory using
this relation. We now show the reasoning in the following proposition.

PROPOSITION 9.1. Let B(X, N) be the space of all bounded B-meas-
urable functions. We introduce a topology into the product space [B(X,
WY by a norm such that for each v=(v,,- -, v,) € [B(F, N}

l 1/2
©.1) sli=[ s 1]
where
(9.2) ””1“= sup |v,(x)] .
reX

@ is a subspace of [B(X, ). Next, let & be the space of all separably-

valued and weak B-measurable mappings q;’s Jrom S into @ with respect
to the norm stated above.
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Then for each qie D there exists a ;56 & such that

1°)

(9.3) #(-, 5)=¢(s)  for Qalmost all s€S (Q,€Qy).

2°) S S «ﬁ(a:, 8)dQ,(s) 1is equal to S S q;(s)dQ,,(s) as a function of x € X.
Conversely, for each gﬁe ?, if we put q;(s)=q;(-, s) for Q,-almost all s€ S
(@, € Qy), gz; becomes a weak B-measurable mapping S into .

Proor. Now ;5(3) € @ is Bochner integrable with respect to Q, €

because of the weak $-measurability, separability of gi; and uniform
boundedness of @ (see K. Yoshida [11], V.5). Therefore, we can find

;56 & with the property 1°), 2°) applying the theorem in Dunford-
Shwartz’ [3] (Lemma III, 16). The inverse also follows from the above.

9.2. Proofs of Lemmas 3.1, 4.1 and 7.1

We show the following two propositions without proofs which may
be seen easily.

PROPOSITION 9.2. Let D be a convex set in the p-dimensional real
space R?, and let f(x) be a concave real function on D. Then for each
fiwed xy=(2y, - -, To,) € D, there exists a(x))=(a,(x,), -, a,(x,)) such that

(9.4) f(x)—f(wo)ééai(wo)(xi—xoi) Jor all z=(w,,--+, x,) €D .

PROPOSITION 9.3. Under the assumption in Proposition 9.2, if
there exists x, € D which attains inf f(x), x, also attains the infimum of
xeD

(9.5) g@)=3laww  for s=(,--, w,)€D.

Conversely if another x' € D attains inf g(x), =’ also attains inf f(x).
xeD

xeD
PrOOF OF LEMMA 3.1. Let %, be
9.6) Z,={¢(¢, P); ¢ € (C)} for each fixed Pe &, .

Then since £, is the image of @(C) by the continuous function ¢(-, P),

Z, is also compact in Z&,. Therefore, there exists z,€ &, such that z,

attains the infimum of the lower semi-continuous function h(z). Then

¢, is an inverse image of 2z, by ¢, so ¢, attains ¢i1}pf(c) a(¢, P) for each
: €

fixed Pe &,. Hence, if we take a,; in Proposition 9.3 as for this z,,
we can see that Lemma 3.1 follows from Proposition 9.2.
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PrROOF OF LEMMA 7.1. For the partial derivatives (ok/oz,)’s,

oh

(2) for z ¢ &,
02y

9.7) I(z)= ty_‘;

is also continuous on Z,. Now for each fixed Pe P, let Z* be the

set of all z,’s which attain inf h(z) where £, is defined in the proof
Zezp

of Lemma 38.1. Then since £} is also compact, there exists z¥ which
attains inf I(2). Thus taking (dh/dz,,)(z}) as a,(P), we can define a

ze Z%
function
©.8) J@ P)=3 -2

0z,

[¢'(¢;" P)]¢tj(¢: P) ’

where ¢ is an inverse image of 2z} by ¢(¢, P). J(¢, P) is C-measurable
for each fixed ¢ € #(C) under Assumption 2.
Now we have

9.9) ré, P)={ U, P~ 61, PIAQ,
and for each fixed Pe P, we obtain
(9.10) r(¢, P)<7r,(¢, P)  for all ¢ € d(C),

by Proposition 9.2.

ProOOF OF LEMMA 4.1. For each ﬁxed PecP, let & be the
set of all S S gb(q;e, P)dQ,’s which are images of Bayes estimator qge’s by

the continuous function S s ¢(-, P)dQ,. Since & is also compact, there

exists a 2, € £, which attains the infimum I(z) on &, where I(2) is
given by (9.10). So, taking (dh/dz;,)(2})=ai,(P), and

(9.11) J{$, P)=3} ai(P)g($, P),

we see that Jf(qg, P) is C-measurable for each fixed ¢ € é(C). Therefore,
we can define

©.12) 7.6, 0=4 | 2 P, P) =946, PIIQIEP) .
Now we have, by Proposition 9.2,
018) [ rigd, Pae,— | rigd, Prida,

<{s 3 at(P)d, P)aQ,— 51 at (Pl 6., PYIR,
for all ¢ € &(C) .
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This (9.13) implies

(9.14) @, &) — (e, STy (6, &)  for all $e&(C) .

Therefore, ﬁe attains the infimum of 'rJe(¢A, £) on &(C). Further, if
another ¢, € @(C) attains this infimum, ¢! also becomes a Bayes estimator.

9.3. Proofs of Lemmas 5.1 and 5.2
PrROOF OF LEMMA 5.1. Let £, be the linear space generated by 5,

over the real field. Then £, is a convex subset in g,. K(u, ¢) is a real-
valued function on U,X 5, which is linear in &€ 5, for each fixed u €
U,. Now let &, ¢ &, be a measure which has mass 1 on v€&/,. Then
if £€5, has mass 8, B+, B, ON ¥y, ¥, -, v, € Yy respectively, £ is
expressed as

(9.15) ¢=3 Biv,
where
(9.16) g‘,lﬁ:l . B0 (i=1,---,7).
Therefore, for each fixed u € U,, we have
(9.17) sup K(u, &)= sup K (u, i‘ ﬂ,&vi)
ek 7381, Bri i=1
vl,“',vr

< sup X B sup K(u,év)
7iBlyevey Br 1 €SV

= sup K(u, év)
eV,

= sup K(u,v) .
veV,

Since it holds in general that
(9.18) sup K(u, §)= sup K(u,v),
Eek veV,
(9.17) implies
(9.19) sup K(u, v)=sup K(u, &) for each fixed we U,.
veVy E

f €&
Hence, we see that (5.4) holds.
Next, if K(u,v) has the conditions 1°) and 2°), K(u, §) also has the

same. So, we can apply Isii’s theorem (see [6], Theorem 3) to our case.
Hence we have

(9.20) inf sup K(u, §)=sup inf K(u,v).
ueUy ek §eSyueUsp
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Thus (5.5) follows from (9.20) and (5.4). Therefore, if inf sup K(u,
ueUy veV

v)# *+ oo, both sides of (9.20) are unequal to +oco. Hence there exists
Uy € U, which attains the infimum of the left-hand side of (9.20). How-
ever, since (9.19) and (5.4) imply
(9.21) sup K(uy, v)= sup K(u,, §)

veY, Eeky

" = inf sup K(u, &)

ueUy £€8y

= inf sup K(u,v),
ue Uy ve

this u, also attains inf sup K(u, v).
ue Uy veYy

ProOF oF LEMMA 5.2. Since { inf K(u, &); éeE} is a subset in

ue U
the real space, 5,={&;;¢, €& (1=1, 2,---)} can be selected so that
(9.22) lim inf K(u, &)=sup inf K(u, &) .
i—oo ueU, §€eE ueU

Then the conditions 3°) and 4°) imply

(9.23) sup K(u,, v)=< inf sup K(u, €)
ueUy §e&

=sup inf K(u, &)
Eef ueU,

=lim inf K(u,¢&,).
-0 ue U,

On the other hand, we have, for any &, ¢ 5,,

(9.24) K(wg, &)< sup K(uo, v) .
vECY,

Therefore, (9.23) implies that for any & ¢ 5,,
(9.25) K(uy, £&)< lim inf K(u, &) .

i—>o0 ueU

Hence we have

(9.26) lim | K(n, &)~ inf K(u,£)| =0
ueUo

1—>00

This shows that u, is a Bayes solution in the wide sense for &,.
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