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Summary

Structure of all g-inverses of a matrix in a weak sense is shown.
Characterizations of main subeclasses of g-inverses are investigated
thoroughly. The dualities among subclasses and the relation between
g-inverses and projections are stressed. The Gauss-Markov theorem re-
duces to a duality of two types of g-inverses.

1. Introduction and notations

The generalized inverse (g-inverse for short) in a strong sense, the
Moore-Penrose inverse, of an m X7 matrix A is an nXm matrix G such
that

1.1) AGA=A,
(1.2) (AG)*=AG ,
(1.3) (GA)*=GA ,
(1.4) GAG=G,

where asterisks denote the conjugate transposes (Penrose [5]). The g-
inverse of A in a weak sense is any G which satisfies (1.1) (Rao [6]).
According to whether each of (1.2)-(1.4) is satisfied or not, there are
eight possible subclasses of g-inverses. We denote these subclasses and
their generic elements as follows:

the class of all g-inverses,
J(A)={G; AGA=A}> A",
the class of least squares type,

J(A)={G; (AG)*=AG; G € J(A)} 3 A7,

* A preliminary Japanese version was published by the author in the Proc. Inst. Statist.
Math., Vol. 17, (1969) with the title “ Generalized inverses of matrices—Part 1.
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the class of minimum norm type,
In(A)={G; (GA*=GA; G e I(A)} 5 4;,
the class of reflexive type,
J.(A)={G; GAG=G;G e Y(A)} > 4;,
the meets of the above classes,
Im(A)=3.(A)NIn(A4) > Afs,
Jn(A)=J(4)NJY,(4)> 45,
Inr (A)=In(4)NI,(4) 5 45, ,
Iur(A)=I9,(A)NI(A)NI,(A) > Axs .

Actually Jyr(A) consists of a single element. The classification and the
notations owe mainly to C. R. Rao [7], which presented a variety of
subclasses of g-inverses of matrices and gave a systematic account on
the subject.

In Section 2 we develop the results in J. Z. Hearon and J. W.
Evans [3] to clarify the structure of (J(A4). In Sections 8 and 4 char-
acterizations of subclasses in C. R. Rao [7] are investigated thoroughly
placing emphases on the dualities among subclasses and on the relation
between g-inverses and projections. Section 5 contains some results on
g-inverses of a product, and Section 6 an aspect of the Gauss-Markov
theorem on least squares estimators.

We shall use the following notations.

C" and C™** the linear spaces of complex n-vectors, and of m Xn ma-
trices. In the latter the inner product of two matrices (a.;) and (b;,) is
defined by Za,b,.

R(A) the range space of a matrix A, or the subspace spanned
by the columns of A.

Ji(A) the null space of a matrix A, {x; Axz=0}, or the orthogo-
nal complement of R(A¥*).

dim S the dimension of a subspace S.

H(A; y)={x; Az=y}, where y € R(A), the hyperplane of solutions of a
consistent equation Az=y. If Ax,=y, this is x,+JI(A).

2] the Euclidean norm of a vector z.

1, the orthogonal projection on R(A).

2. Structure of J(4)

We use the canonical form of g-inverses which were introduced by
Hearon and Evans [3] and Tewarson [10]:
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It is well known that for an m X% matrix A there exist unitary
matrices U(m X m) and V(nXn) such that

2.1) A=U*DV

and D’s elements are zero except for d;, i=1,---,r (=rank A). It is
not essential that D is diagonal. We need the submatrix of the first »
rows and the first » columns of D to be nonsingular.

ProPOSITION 2.1. Let D be an m X7 matrix of the form
4 O]

2.2) D::[O o

where 4 is an rXr nonsingular matrix, and O’s are null matrices of
suitable sizes. Then an nXm matrix belongs to (D), J,(D) or Y. (D),
iff it is of the following forms, respectively:

p=[y sl o=y §]
@3 4 R 4t R
D’_"z[o S]’ D;=[L LAR]'

The forms of Dj,, ete., are clear from these. Notice that
b4 )
is uniquely determined.

Proor. Partition D, for example, into submatrices and just check
the identity DD-D =D. Other forms are also derived by verifying (1.2)-
(1.4).

ProrosiTION 2.2. If A=U*BV, U and V are unitary, then G be-
longs to J(A), I,(4), I.(A) or I,(A) iff G=V*FU and F belongs to
J(B), I,(B), I.(B) or J,(B), respectively. The statement can be ex-
tended to the meets JJ,,(A4) ete.

ProOF. AGA=U*BVGU*BYV is equal to A=U*BYV iff BVGU*B=B,
that is G € J(A) iff VGU*=F ¢ I(B).
Other propositions are proved similarly.

In expression (2.1) U and V are not always unique. We, however,
have a well known result (Penrose [5]) which will be shown very shortly.

PROPOSITION 2.3. Ajyr is unique.
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PrROOF. Let A=U*D,V,=U;*D,V, be two ways decomposition of the
form (2.1). Let G,=V*(D)urU;, and G,=VXD,)xrU, where (D)zr and
(D))ur are uniquely determined. As D,=U,U*D,V\Vy¥, G,=VXV,V¥)*.
(DU UF)*U,=G, by Prop. 2.2.

Now we define the following subsets of the linear space of all nXxm
matrices with complex elements, C**™. The subscripts correspond to
those of J,(A4), ete.

K(A)={G—Ax»r; G € I(A)) = {G,—G; Gy, Gy € I(A)},

K (A)={G—Axur; G € 9,(A)} ={Gi—G;; Gy, Gy € I,(A)},
Ku(A)={G—Axr; G € I,.(A)} ={G,—Gs; Gy, Gy € I, (A)},
K, (A)={G—Axr; G € I,(4)},

Kin(A)=H (ANKA (), K, (A)=H(A)NK,(A),
Koy (A) =K n(A)N K, (A) .

PROPOSITION 2.4. Except for K ,(A) these subsets are all linear
subspaces of C™*™ and they have the following structures:

H(A)=Hin(A) D K., (A) D K, (4),
LKZ(A)Z'JClm(A)@L}Clr(A) ’ Jcm(A)z'jClm(A)@’jcmr(A))

Kin(A), K., (A) and K,,(A) are mutually orthogonal (in terms of the
inner product mentioned in the last section) and Ay, is orthogonal to
K(A). Moreover,

dim K(A)=mn—r, dim K, (A)=(n—r)m,
dim X, (A)=(m—r)n, dim K,,(A)=(m—7r)(n—7),
dim K, (A)=(n—r)r, dim K, (A)=(m—r)r .

Proor. Fix a decomposition (2.1) and consider Prop. 2.2 and the
sets of D~ of the form (2.3).

PROPOSITION 2.5. Any g-inverse can be expressed uniquely as
A_:A§p+sz+Klr+Kmr ’
where K, € X,.(A) K,, € K,,(A) and K,,, € K ..(A).

PrOOF. The first term is the orthogonal projection of A~ on the
orthogonal complement of K{(A). The others are the orthogonal projec-
tions on (.K;m(A), JC”(A) and JCmr(A).
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PROPOSITION 2.6.
Ki(A)={K; AK=0, K e C*"},
Hn(A)={K; KA=0, Ke C**"}.
ProOF. If A is decomposed as (2.1) and (2.2) then
AK=0 iff
k=r[? 9.

where L and S are arbitrary, which means K¢ X,(A). The second ex-
pression can be proved similarly.

ProrosiTION 2.7. If rank A=m<n then

J(A)=9,(4)=Y,(A)=J,,(4)
and
In(A)=In (A)=Iim(A)=Iur(4) .

If rank A=n<m then
J(A)=In(A)=Y,(4)=,.,(A)

and
J(A) =Y, (A)=Iin(A)=Yur(4) .

Proor. If rank A>=m<n, for example, D in the decomposition (2.1)
has the form

D=[4 0]

where 4, mXm, is nonsingular, then any
A—l

b :[ L ]

belongs to J,(D), J,(D) and the 9, (D). And

A—l
el 4]
0]
is also Dyp.

Remark. If rank A=m=n then any A~ is the inverse A~

Concluding the section we notice that the properties of g-inverses
are those as linear mappings (at least so far as discussed in this paper)
and free from the coordinate system. Thus, for a given A we choose
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a suitable coordinate system then we can proceed only considering a
matrix of the form (2.2).

3. Characterization of subclasses—(1)

The theory of g-inverses is closely related to that of projection, so
we summarize its basic features.

If the linear space of complex m-vectors C™ is a direct sum of sub-
spaces S and I, any vector is expressed uniquely as x=x,+%,, % €S
and 2,€<9. Then the linear mapping Pr=z, is the (generalized or ob-
lique) projection on S along & and P is uniquely determined. The fol-
lowing proposition is well known.

PRrROPOSITION 3.1. The following conditions are equivalent and char-
acterize an m Xm matrix P to be a projection.

(1) P:=P,

(2) Pr=x for all x € R(P),

(8) RUI—P)=IJUP) or R(P)=JU(I-P),

(4) RP)NRUI—-P)={0} or C"=R(P)DR(I—-P),

(5) rank (I—P)=m—rank P.

Now, let A be an mXn matrix. We shall need

PROPOSITION 3.2. P=AG is a projection on R(A) iff one of the
following equivalent conditions is satisfied.

(1) P!=P and rank P=rank A,

(2) PA=A,

(3) RMADRUI-P)=Cm,

(4) rank (I—P)=m—rank A.

ProOF. Considering Prop. 8.1 we have just to check a few facts.
(1) As rank P=rank 4, R(P)=R(4). (2) R(P)=R(A) and Px=x for
all ze R(A). (3) In general R(P)+R(I—P)=Cm™, so rank P=m—rank
(I—P). Here, rank P<rank A=m—rank (I—P), then R(P)=R(4). (4)
Almost the same as (3).

We get similar conditions for I—Q=GA to be a projection on JI(A).

Table 1. A projection P and related ones

P on R(P)= along | R(I—P)
is a projection
I-P along | JI(I—P) on =JUP)
4 1
I—pP* on R(I—-P*) along | R(P¥H=
is a projection
P* along | =JU(P*) on JI(I—P¥*)
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Table 1 summarizes projections related to a projection P. - It shows
that P is the orthogonal projection (on R(P) along JI(P*)) iff P=P*.

ProposITION 3.2. P=I1,, the orthogonal projection on R(4), iff
one of the following equivalent conditions is satisfied.
(1) P=AG, P=PP* and rank P=rank A,
(2) P=AG and P*A=A,
(3) PA=P*A=A,
(4) ||I-P)x||=||(I—-Q)x|| for any « and for any @, a projection
on R(4),

PrRoOOF. (1) P=PP* implies P=P*=P% (2) R(P)CR(A)C R(P*),
so all three subspaces are identical. As P* is a projection on R(4) it
is I1,. (3) Both P and P* are projections on R(A), so they are iden-
tical and orthogonal from Table 1. (4) ||(I—Q)x|*=||(I—H )z |*+
W, —Q)x |P=||(I—11 )x || since (I—IT1,)(II,—Q)=0, and the equality
holds iff Q=11,.

Now we characterize the subclasses of g-inverses. Since the purpose
of this and the following sections is to show how our new approach
unifies the facts and simplifies the proofs we state many well known
results trying to extend them. We shall not try to trace the original
contributor. Besides Rao [7], Hearon and Evans [3], and their earlier
works, Golden and Zelen [2], Rohde [8], Mitra [4], etc. treat the subject.

PROPOSITION 3.3. Any one of the following equivalent conditions
characterizes G € J(A), where A is an m Xn matrix:

Dg. 1 Gye H(A;y) for all y e R(A),

Dg. 2 xz=Gy gives a solution for a consistent equation y=Axz,
Dg. 3 AGA=A,

Dg. 4 AG is a projection (in C™) on R(A) along JI(AG),
Dg. 4 GA is a projection (in C") on R(GA) along JI(A),
Dg. 5 AG is idempotent and rank AG=rank A,

Dg. 5 GA is idempotent and rank AG=rank A,

Dg. 6 rank (/—AG)=m—rank A,

Dg. 6’ rank (I—GA)=n—rank A,

Dg. 7T AGAA*=AA¥*,

Dg. 7 (GA*A*A=A*A.

PrOOF. Dg. 1-3 are almost the same expression. Dg. 3-6 show
that AG is a projection on R(A) and Dg. 7 a projection on R(AA*)=
R(A). In Dg. 4-7 we can replace A and G by A* and G* respectively
because of the following Prop. 3.4, and rewriting the results we get
Dg. 4'-7'.
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PROPOSITION 3.4. G € J(A) iff G* € J(4%*)
PrOOF. Take the conjugate transpose of Dg. 3.

PROPOSITION 3.5. Any one of the following equivalent conditions
characterizes G € J,(4):

Dl. 1 GyeH(A;,y) for all ye C™,
Dl. 2 Gy gives a least squares solution of Az=y which is not consistent

generally,
Dl. 83 AG=I,,
Dl. 4 GeJ(A) and (AG)*=AG,
Dl. 5 GeJd(A) and (AG)*(I—AG)=0,
Dl. 6 A*AG=A%*,
DI. 7 GeJI(A) and R(G*A¥)C R(A).

ProoF. Dl 1-3. G maps any point of y,+JI(A*), ¥, € R(A), to a
point of H(A;y,), a least squares solution of Az=y €y, +TUA*). AG
maps any point of y,+JI(A*) to ¥,. The equivalence of Dl. 3-7 comes
from Prop. 8.2. Dl. 7 means, from Table 1 and Dg. 4, that R(AG)=
R(G*A*)=R(A) so AG=11,.

PROPOSITION 3.6. Any one of the following eqﬁivalent conditions
characterizes G € 9, (4).

Dm. 1 Gye R(A¥NIH(A;y) for all ye R(A),
Dm. 2 Gy gives the minimum norm solution of a consistent equation

Ax=y,
Dm. 3 GA=Il,.,
Dm. 4 GeJ(A) and (GA*=GA,
Dm. 5 GeJd(A) and (GA)*(I—GA)=0,
Dm. 6 GAA*=A*,
Dm. 7 G e 9d(A) and R(GA)C R(A*).

PrROOF. Dm. 1-3. 9((A;y) is a hyperplane which is parallel to
TA). R(A¥)NH(A;y) consists of a single point which is the ortho-
gonal projection of the origin on the hyperplane ¥ (A;y). We get Dm.
4-7 starting from Dm. 3 based on Prop. 3.2 or from DIl. 4-7 just con-
sidering the following proposition.

PROPOSITION 3.7. G € J9,(4) iff G* € 9, (4%).
ProoF. Compare Dm. 8 with Dl. 8, or (1.3) with (1.2).

Any pair of conditions, one from Dl.’s the other from Dm.’s for
example A*AG=GAA*=A*, characterizes G € J,,(A). It should be no-
ticed that A;y does not always belong to R(A*)NIH(A; ), or || Anyl|
is not always minimum unless y € R(A4). It relates to the fact that if
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rank A <min (m, n) there exists A;, of rank larger than rank A.
PrOPOSITION 3.8.

Kim(A)={I—-1)Z(I-11,); Z € C**"}
={(I-1I)G(I—-11,); G € I(A)}.

Proor. If A is decomposed as

A=U*[A O]V

OO0
then
(O N0
—I1.=U*
-n, U[o I]U‘
and

I—IIA.=V*[8 (I)]V.

4. Characterization of subclasses—(2)

PROPOSITION 4.1. Any one of the following equivalent conditions
characterizes G € J,(4). We assume G € J(A).

Dr.1 rankG=rank A,

Dr. 2 GR(A)=2R(A),

Dr. 3 RA)PING)=C™,
Dr. 4 GAG=G or A€ I(G).

Proor. Usually R(G)DR(GA)=GR(A). Under each condition these
two subspaces are equal.

PROPOSITION 4.2.
I (A)=1{G\AGy; Gy, G, € I(A)}
={GAG; G € I,(A)}
={G1AG,; G, € I,,(4), G1 € I, (A)} .
ProoF. It is well known that {1stset} c,(A), and it is clear that
{2nd set}, {3rd set} c {lstset}. To see that any A; belongs to the {2nd

set} just remark Dr. 4 in Prop. 4.1. To show that any A; belongs to the
{3rd set} put G,=A;11, and G,=11,.A; and refer to the later Prop. 4.4.

Remark. The statements imply that

J,.(A)={GAG; G € I(A)}
={G/AG;; G, G; € I, (A)} .
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PROPOSITION 4.3.
Ge Y. (A) iff G*e 9,(4%),
G € Y, (A) iff G* € I,.,(A*).
PROPOSITION 4.4.

I (A)=1{GIl,; G € J(A)}
={GIl,; G € I, (A)}

K (A)={I—~1)Z1,; Z € C*™}
={(I—11+)G11,; G € I(A)}

Ine(A)= {11 ,,G; G € I(A)}
={l1,.G;G € I (A)}

Honr(A)= {1 o Z(I-11,); Z € C™*™}
={ll ,G(I-11,); Ge I(A)}.

PrRoOOF. The first half is shown from the canonical form representa-
tions. The latter half is clear from the duality of Prop. 4.3.

Remark. The first expressions imply
I, (A)={(GI ;G € J,(A)}
={GI,;GedI,(A)}.

Similar expressions hold for J.,.,(A).
PROPOSITION 4.5. We assume G € J(A).
Ged,(4) iff RG*)=R(4),
G eI, (4) if RG)=R(A*).

ProOF. By Prop. 4.3 the two statements are equivalent, so we
prove the first. If the condition holds AG is a projection on R(A)=
R(G*) along TUAG)DTNG)=R(G*)*, so AG=II, and clearly rank A=
rank G. Conversely if Ge€ J,,(4), R(G*)DR(G*A*)=R(A) by DL 17,
and the equality holds since rank G*=rank A.

PROPOSITION 4.6.
i (A)={GA*; G € J(A*A)}
={GA*;Ge I,,(A*A)}

Iur(A)={A*G; G € I(AA)}
={A*G; G € In (AA¥)}.
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ProoF. The first half can be proved by using the canonical forms.
The latter half is its dual.

PROPOSITION 4.7.
A(A*A)-A*=]I, .
Proor. This is a corollary of Prop. 4.6.

PROPOSITION 4.8. Any one of the following equivalent conditions
characterizes G=Ay,.

DMP. 1 Ged,(A)NI.(A)NJY,(A),

DMP. 2 Gye R(A*)NI((A; ,y) for all y,
DMP. 3 GeJ,(A) and ||Gy||<|| Ary]|| for all A7 and y,
DMP. 4 G=A4;11,,

DMP. 4' G=I1,.A;,

DMP. 5 G=I,.A"1l,,

DMP. 6 G=A;AA;,

DMP. 7 GeJY,(A) and A€ Y,(G),

DMP. 7 GedY,(A) and A€ I,.(G),

DMP. 8 GeJ,(A) and R(G)C R(A*),

DMP. & GeJ,(A) and RG¥cCR(A),

DMP. 9 G=A*AAY);,

DMP. 9 G=(A*A) A%,

DMP. 10 G=A*(AA*)"A(A*A)"A*,

DMP. 11 G=A*(A*AA*)"A*, (Zlobec [11])*.

PROOF. G € J,,(A) means, as stated in Prop. 4.5, that R(G@)=
GR(A)=R(GI,)=R(A*). This and DI. 1-3 shows the equivalence of
DMP. 1-4. The equivalence of DMP. 4-6 follows from DI. 3 and Dm. 3.
DMP. 7 is equivalent to DMP. 1. The second condition of DMP. 8 means

Table 2 S/ means the projection on S along .
In Cm
Ge I(A), In(A) Ji(A), Im(A) Ir(A), Imr(A) | Jir(A), Iur(A)

AG R(A)/TNAG) R(A)TG)
G*A* | R(G*A%)/T(A*) R(GH)T(A*)

} i } Ma=1lg+

In Cn»
Ge I(A), Ji(A) In(4), Im(4) | I5(4), Jir(A) | Ime(A), Inr(A4)

GA R(GA)/TA) R(G)/T1(A)
A*G* | R(A®)/TUA*G*) R(AM[TUG*)

} T4+ } IIp=IIg

*  After the paper was accepted the author learned that the condition DMP. 11 of
Prop. 4.8 should have been ascribed to Mitra [4] (p. 111, Example (iv)).
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G€In(A). DMP. 9 means AG=11, and G € I,,(A). DMP. 10 is the
same as DMP. 6. DMP. 11 can be shown by the canonical form. DMP.
7'-9’ are obtained from DMP. 7-9 by the dualities.

The properties of AG, ete. as projectors are summarized in Table 2.
If rank A=m=<mn then AA~ is an idempotent m Xm matrix of rank m,
or the unit matrix, so any g-inverse is a right inverse. Similarly if
rank A=n<m then any g-inverse is a left inverse.

5. g-inverses of product

In this section we shall get expressions of g-inverses of a product
AB. The following proposition is an extension of a formula by R. E.
Cline [1]. The proof is similar to Cline’s.

PROPOSITION 5.1. Let B,=A"AB and A,=ABG,

(1) if G,e 9Y(B,) then A,B;=AB and
G(A)” € J(AB),
Gy(A); € 9, (AB),
G.(A); € J.(AB).
(2) if Gie Ju(By) then (By).(A)x € In(AB),
(Br (A € I,(AB).
(3) if G,€ Y,.(B,) then G,(A)in € I.n(AB),
G(A)xr= (AB)x>.
(4) if Gy=(B)xr then G\(A)m=(AB)x>r.

Similarly let A,=ABB~ and B,=G,A;B

(1) if G;€ 9(A,) then A;B;=AB and
(B:) G € I(AB),
(BI); 2 € J,,,(AB),
(B);G: € 9,.(AB).
(2) if Gy€ In(4,) then (B)r(4,)r € J.(AB),
(Bo)i (As); € 9, (AB).
(3) if Gy € Jin(A,) then (By)inG: € Jin(AB),
(B))urGy=(AB)x>.
(4) if G;=(A)xr then (By);G:=(AB)xr.

Remark. If A and B have sizes IXm and m Xn respectively then
(AB)~ may have rank min (I, »), while (B;)"(4,) has rank at most min (I,
m, n) so the latter form cannot express all (AB)".

PROPOSITION 5.2.
(A7)*A; and (A;)*A” € J(AAY)
(AR)*A7 € 9,(AA¥)
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(AT)*A; € In(AA¥)
J,- (AA*)= {G;"Gz; Gl € J(A)y Gz € J,,"(A)}
={G{G;; G € J,(A), G: € In(A4)} .
Other expressions can be obtained by noticing that if Fe I, (AA*) then
F*e 9,(AA*) also, and recalling that (AR)*=(4%).
Combining these, we get other results. For example,
(Aur)*Arn=(Ar)*Aur=(AA%)ys .

PROOF. All are shown easily from the canonical forms. As stated
in Remark of Prop. 5.1, only J,(AA*) can be expressed exhaustively
by products of g-inverses.

ProPOSITION 5.3.
I (A)={G,GFA*; G, e Y, (4), G: € I(A)}
Inr (A)={A*G¥Gy; Gy € I(A), Gy € I, (A)} .

PrOOF. Use the canonical forms. The expressions are suggested
from Props. 4.6 and 5.2.

6. The Gauss-Markov theorem

Finally we consider the Gauss-Markov theorem on the least squares
estimator from our point of view. We consider the simplest linear model :
E(y)=XB and D(y)=4l. In this section we consider only real vectors
and matrices. By primes we denote transposes.

If c € R(X’) then ¢'B is estimable and I’y is the best linear unbiased
estimator iff ||| is minimum under the restriction X/=c¢. Our solution
is I=(X")nc, so the best estimator is ¢/((X");)y.

On the other hand the least squares estimator of ¢g is c',§ where
$ minimizes || Xf—y||. Our solution is ¢’X;"y, which is the best linear
unbiased estimator by Prop. 3.7. So the theorem reduces to the duality
between A; and A4;.

The least squares principle leads to the normal equation X ’X1§=
X'y. Our solution is (X’X)~X’, which is X;.

The choice of X;~ does not affect the value of the estimator if c'B
is estimable, since if ¢=X'f then the estimator is S XX y=(1 f)'y.

The minimized variance is equal to

V(l'y)=dc' X (X;)e
or from the least squares solution
V(c’1§) =d(X'X)"X'X(X'X) ¢
=dd(X'X);c.
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In the first expression X, (X;) € J(X’X) but does not always belong to
the smaller subsets, J,(X'X) etc. (cf. Prop. 5.2). Anyhow if c=X'f
then (X' X) e=| O f |

Concluding the paper we remark that some discussions on J(4),

J,(A) and g-inverses of product can be extended to g-inverses of a
general mapping (cf. M. Sibuya [9]).
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