ON THE STRONG LAW

V. K. ROHATGI

(Received May 15, 1969)

1. Introduction

Let $\{X_n, n=1, 2, \cdots\}$ be a sequence of independent random variables with $EX_n=0$ and $EX_n^2=\sigma_n^2$. Write $S_n=\sum\limits_{k=1}^n X_k$ and let $b_n\uparrow\infty$ be a sequence of real numbers. If $\sum\limits_{k=1}^\infty b_k^{-2}EX_k^2<\infty$ then with probability one (a.s.), $b_n^{-1}S_n\to 0$ (see [2], p. 238). In [3], Teicher shows that the series $\Sigma_1=\sum\limits_{n=1}^\infty n^{-2}\sigma_n^2$ may be considered as the first in an infinite heirarchy of series $\sum\limits_k$ of decreasing severity, the convergence of any one of which, in conjunction with certain other conditions, implies the strong law: $n^{-1}S_n\stackrel{\text{a.s.}}{\to} 0$. In this note we generalize the results of Teicher by replacing the coefficients n by arbitrary coefficients b_n .

2. Results

THEOREM 1. Let $\{X_n\}$ be a sequence of independent random variable with $EX_n=0$, $EX_n^2=\sigma_n^2$ and let $b_n\uparrow\infty$ be a sequence of real numbers. If

(a)
$$\Sigma_2 = \sum_{n=2}^{\infty} b_n^{-4} \sigma_n^2 \sum_{i=1}^{n-1} \sigma_i^2 < \infty$$
,

(b)
$$b_n^{-2} \sum_{i=1}^n \sigma_i^2 \rightarrow 0 \text{ as } n \rightarrow \infty,$$

(c) $\sum_{n=1}^{\infty} P\{|X_n| > a_n\} < \infty$ for some sequence $\{a_n\}$ of positive real numbers with $\sum_{n=1}^{\infty} b_n^{-4} a_n^2 \sigma_n^2 < \infty$,

then

$$b_n^{-1}S_n \stackrel{\text{a. s.}}{\longrightarrow} 0$$
.

PROOF. We follow the methods of Teicher [3] closely and see that

$$(1) (b_n^{-1}S_n)^2 = b_n^{-2} \sum_{k=1}^n X_k^2 + 2b_n^{-2} \sum_{j \le k} X_j X_k.$$

It therefore suffices to show that the two terms on the right-hand side of (1) converge to zero a.s..

Define $Y_n = X_n^2$ for $|X_n| \le a_n$ and 0 otherwise and note that

$$\sum_{n=1}^{\infty} P(Y_n \neq X_n^2) = \sum_{n=1}^{\infty} P(|X_n| > a_n) < \infty$$

in view of (c). It follows by Equivalence Lemma ([2], p. 233) that $b_n^{-2} \sum_{k=1}^n X_k^2$ and $b_n^{-2} \sum_{k=1}^n Y_k$ converge a.s. to the same limit. But

$$\mathbf{E} \{ Y_{n} - \mathbf{E} Y_{n} \}^{2} \leq \mathbf{E} Y_{n}^{2} = \int_{\left[|x_{n}| \leq a_{n} \right]} x_{n}^{4} dF_{n}(x) \leq a_{n}^{2} \sigma_{n}^{2}$$

where F_n is the distribution function of X_n and so from (c)

$$\sum_{n=1}^{\infty} E\left\{\frac{Y_{n} - EY_{n}}{b_{n}^{2}}\right\}^{2} \leq \sum_{n=1}^{\infty} b_{n}^{-4} \alpha_{n}^{2} \sigma_{n}^{2} < \infty.$$

Therefore the series $\sum_{n=1}^{\infty} b_n^{-2} \{Y_n - EY_n\}$ of independent summands with zero means converges a.s. ([2], p. 236). A simple application of Kronecker's Lemma ([2], p. 238) now yields $b_n^{-2} \sum_{i=1}^{n} (Y_i - EY_i) \xrightarrow{s.s.} 0$. But

$$b_n^{-2} \sum_{i=1}^n \mathbf{E} Y_i = b_n^{-2} \sum_{i=1}^n \int_{\lceil |x_i| \le a_i \rceil} x_i^2 dF_i(x) \le b_n^{-2} \sum_{i=1}^n \sigma_i^2 \to 0$$

as $n \to \infty$ by (b) and so $b_n^{-2} \stackrel{n}{\underset{i=1}{\longrightarrow}} V_i \stackrel{\text{a.s.}}{\underset{i}{\longrightarrow}} 0$.

Next we look at the term $b_n^{-2} \sum_{j < k} X_j X_k$. Following the notation of [3] we write

$$U_{2,n} = \sum_{j < k} X_j X_k = \sum_{j=2}^n X_j S_{j-1}$$

and for $n \ge 2$

$$W_{2,n} = \sum_{j=2}^{n} b_j^{-2} X_j S_{j-1}$$
.

The sequence $\{W_{2,n}\}$ is easily shown to be a martingale with respect to the σ -field generated by X_1, \dots, X_n . Also

$$egin{aligned} & \mathbf{E} \, W_{2,n}^2 \! = \! \sum\limits_{f=2}^n b_f^{-4} \mathbf{E} X_f^2 \mathbf{E} (S_{f-1})^2 \ & = \! \sum\limits_{f=2}^n b_f^{-4} \sigma_f^2 \sum\limits_{i=1}^{f-1} \sigma_i^2 \! < \! \infty \end{aligned}$$

in view of (a) and it follows by the Martingale Convergence Theorem ([1], p. 236) that $W_{2,n}$ converges a.s. to some random variable. An application of Kronecker's Lemma immediately yields the required result

that $b_n^{-2} \sum_{j=2}^n X_j S_{j-1} \xrightarrow{a.s.} 0$. This completes the proof of Theorem 1.

Remarks 1. Teicher [3] proved the $b_n=n$ case of this theorem as we remarked earlier.

- 2. If $\Sigma_1 = \sum_{n=1}^{\infty} b_n^{-2} \sigma_n^2 < \infty$ then all the conditions of Theorem 1 are satisfied and we get Kolmogorov's result. In this case choose $a_n = b_n$.
 - 3. The conclusion of Theorem 1 holds if we replace (c) by

(c')
$$\sum_{n=1}^{\infty} P\left\{ |X_n| > \left(\sum_{i=1}^{n-1} \sigma_i^2\right)^{1/2} \right\} < \infty$$

or

$$(c'')$$
 $\sum_{n=1}^{\infty} b_n^{-4} \mathbf{E} X_n^4 < \infty$.

To see (c') we choose $a_n = \left(\sum_{i=1}^{n-1} \sigma_i^2\right)^{1/2}$ and then

$$\sum_{n=1}^{\infty} b_n^{-4} a_n^2 \sigma_n^2 = \sum_{n=1}^{\infty} b_n^{-4} \sigma_n^2 \sum_{i=1}^{n-1} \sigma_i^2 < \infty$$

by (b). To see (c") we observe that $\sum_{i=1}^{n} b_i^{-2}(X_i^2 - \sigma_i^2)$ is an \mathcal{L}_2 -bounded martingale and it follows again by Kronecker's Lemma and (b) that $b_n^{-2} \sum_{i=1}^{n} X_i^2 \stackrel{\text{a.s.}}{\longrightarrow} 0$.

In an analogous manner one can follow the methods of [3] and obtain the following generalization of his Theorem 2.

THEOREM 2. Let $\{X_n, n=1, 2, \cdots\}$ be a sequence of independent random variables with $EX_n=0$, $EX_n^2=\sigma_n^2$. Let $b_n\uparrow\infty$ be a sequence of real numbers. Suppose (b), (c) hold and for any integer $k\geq 2$

(a')
$$\Sigma_k = \sum_{i_k=k}^{\infty} b_{i_k}^{-2k} \sum_{i_{k-1}=k-1}^{i_k-1} \sigma_{i_{k-1}}^2 \cdots \sum_{i_1=1}^{i_2-1} \sigma_{i_1}^2 < \infty$$

holds. Then $b_n^{-1}S_n \stackrel{\text{a.s.}}{\longrightarrow} 0$.

We omit the details of this demonstration. We remark however that (a') becomes less stringent with increasing values of k so that (a') is a generalization of (a).

THE CATHOLIC UNIVERSITY OF AMERICA

REFERENCES

- Feller, W. (1966). An Introduction to Probability Theory and its Applications, Vol. II, (New York).
- [2] Loève, M. (1963). Probability Theory, (New York).
- [3] Teicher, H. (1968). Some new conditions for the strong law, Proc. National Acad. Sciences, 59, 705-707.