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1. Introduction and summary

Let 0<0,<0py<-++<Oy_1y,<1 be N—1 random variates from the
uniform distribution f(6)=1, 0<#<1. Then it is known that the joint
distribution of the N random (intervals) variates U,;=6.,—60,_p, j=1,
<+, N; 0x=1, 04,=0, is a Dirichlet’s distribution. Further, if 0<
Up<Ugp<+++<Uy_<1 are the ordered U’s, then it may be shown that,
see e.g., Karlin ([2], p. 263, example 7), the distributions of the ordered
U’s are identical with those of the distributions of the reduced exponen-
tial order statistics. Laurent [3] uses this result implicitly to derive the
distributions of the reduced ith order exponential statistic. The implicit
argument contained in Laurent’s paper is this: the probability that at
least k& values of the U’s exceed a specified constant a, i.e., P{Up_is»
>a}, is the probability that the (N—k-+1)th reduced exponential order
statistic exceeds a. Laurent did not bring out this argument explicitly
and hence his derivation of the distribution of the reduced ith order
exponential statistic appears to be involved. Further, it may be shown
that any one of the U’s and hence any one of the reduced exponential
statistic has a beta distribution. This beta distribution is termed by
Laurent as an exponential analog of Thompson’s [7] known symmetrical
beta distribution. Our main purpose in this paper is to explicitly bring
out the relation between the distribution theory of reduced exponential
order statistics and the order U variates, implicitly contained in Laurent’s
paper. Note that the distribution theory of U’s, i.e. of rectangular or-
dered variates may be studied by studying the distribution theory of
reduced exponential variates. We show that it is easier to study first
the distributions of reduced exponential order statistics and then to study
the distribution of ordered U’s. Thus our derivations of the distribu-
tions of ordered U’s are simpler than the ones available in the litera-
ture, see e.g., Aoyama [1], and the references in his paper. Finally we
consider a few applications of our results to survivor probability esti-
mation problems of Failure Theory.
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2. Distribution of U()
It is known that the joint distribution of U’s is
(1) f(Ulv"" UN—I)=(N_1)! , 0<E Ut<1-

The equation (1) is a particular case of the Dirichlet’s distribution, Wilks
([8], p. 177)

cee F(al+ +ak+ﬁ) .,1_1 a=1(1 —
(2) f(z, ) %)= I(a)- T (B) e (11— z),
where 0<z,<1, 31z, <1. It follows from (1) that
(3) fU)=(N-1)Q-U)**, i=1,---,N—1.

Thus P{U;>a}=(1—a)""'. Similarly the probability that a specified j
of the U’s each exceed a is S;=(1—ja)*~'. Thus the probability that
exactly k of U’s each exceed a is Py, as given by Waring’s theorem,
Wilks ([8], p. 28, example 1.11)

(4) Pu=(§) 2 -0(F2F)s)

_ «(N—k L Ne

=(¥) f-v (T ohja—sr.

It follows that the probability P, of at least k of U’s each exceed a is
( 5 ) Pk:P[k]+ +P[N]=P{U(N k+1)2a}

o O PTG Vi G [ (B

Now we shall derive the result (5) by using exponential order statistic
theory. Let 2, #;,---, 2y be a sample of size N from

(6) f(x)=exp{—2x}, 0<z<oc0,

and let 0< &, <Ty< -+ <&w be their ordered values, then it is known
that, Karlin ([2], p. 263, example 7), the distributions of the reduced
variables z,,/S, j=1,-++, N—1, S=%y+ -+ +&w are identical with those
of the ordered U’s, j=1,---, N—1. The transformation

j .
(7) x(j)=;=lyi1 i9.7=1y"'va

with Jacobian unity transforms the ordered x variates to the unordered
y variates, 0<y;<oo, and the y’s are independently exponentially dis-
tributed. Now we are interested in finding the distribution of the sta-
tistic
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i
( 8 ) W: L = -’Eﬂ yj =

T+ + 2w y 3
E(N J+1)y,

SHES

s say ,

where % and v denote, respectively, the numerator and denominator of
the second member on right-hand side of (8). Obviously the joint char-
acteristic function (c.f.) ¢(t,, it;) of w and v is

(9) gt ity=N! || exn it 31y,
— 5 (N =G+ )A— ity dy,- - -dya
= (NY(V—i)l(1—ity"~)

. {,I:[ [(N—k+1)(1_itz)_itl]}-l

_ NI(=1)(L—ity)'-¥
i (N=)G—DI =N —i+5) A —it)—at,]

On inverting the c.f. (9) we find that

NI(—1y~ exp {—v} {v—(N—i+J)u}"*
a0 =3 M DN —2)!G— ) (G-1)!

It follows that

NIN—1)(= 1y~ —(N—i+ )W)
11 w
a =3 (N=o)IG -1 (i=3)!

— % NN —1)(—1)-¥-1+D(] ¢ )2
=i=irt (N—9)l(¢—(N—i+ 1) (N —-2)!

On setting N—i+1=k, and integrating f(W) over the range W=a to
W=t we find P{W>a} and this result agrees with (5). The equation
(11) gives us the density of Uy_y,1,, Which could also be derived by dif-
ferentiating (5) with respect to W. The result (11) has been derived by
a number of authors, see e.g., Aoyama ([1], p. 244, equation 2), Laurent
([3], p. 656, equation 20) and Likes [5]. Incidentally note that equation
(4) provides a solution to a problem in Karlin’s book ([2], p. 265, prob-
lem 18).

Further, note that U,=6,—8._,, has the same distribution as «,/S,
1=1,.--, N—1. Now any linear function of ordered #’s is a linear funec-
tion of U’s and hence a linear function of reduced exponential statistics.
Hence the distributions of the linear functions of ordered rectangular
variates may be easily studied by studying the distribution theory of
linear functions of reduced exponential statistics.
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3. Simultaneous distribution of Ui and Ug)

Now we have to find the joint density of the ith and jth reduced
exponential order statistics. Thus setting

t N
Wl'—'xm/S:kE:l Ye E(N—k’*'l)?h:u/’v:(]u)
(12) j N
Wz=(x<,)—xa>)/5'=k§1 Y E (N—=k+Dy=2/v=Uy;—Uy

we find the joint c.f. ¢(ity, its, its) of u, 2, and v to be
13)  g(ity, its, ity)
=N! S: .. S: exp {itlgy,+it, kgl Y
— 5 (N—k+ D) A= itw] dyi- - -ds
= (NN =) L—ity* ) {kﬁ [(N——k+1)(1—it,)—it,]“}

' {k;ljﬂ [(N—=Ek+1)(1—1t)— itz]_l}

—_ N! { $ (=1 "=t }
(N—=7) =t (r=1—) (=) [(N —r+1) (1 —its)—it,]
i {z (=1)* } .
S (k=1 G—R) [(N—Fk+1)1—1t)—it]

On inverting the c.f. (13), we have that
—s S NI(=1)Y"""*exp{—v}
(14) Fona =2 2 Nl r—i=DIG—n
C[—(N=k+1)u—(N—r+1)2]""
(k=1 T(N—2)(i—k)! )

The density of W, and W,, and hence that of Uy, and U, now is

_ 4 L NIN-1)(N—2)(—1)r+-*
(15) f(U(mU(n)_,:Ekagl (N_j)!(r—’i—l)!(j—r)!

. N—(r—-k)Uy,—(N—-r+1)U,]"?
k—D!GE—k)! ’
0<U,»<UpH<1.

On setting k=t—t and r=j—q the equation (15) reduces to

16) S, Up)=3] ’g‘ (N—l)(N—Z)(l;{ )(z _{l)i(i+1)
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(D (o - (- g i+t T

—(N=j+q+1)U,)""*,
a result which agrees with the one given by Aoyama ([1], p. 245, equa-
tion 3).
Since any linear function of ordered U’s is the same linear function
of 2,/S, j=1,---, N, the distribution of this linear function may be
easily obtained by using the method of this section.

4. Application

We shall consider some applications of the distribution theory of
U, to the survivor probability estimation problem considered by Laurent.
For this purpose we use the following result of Patil and Wani’s [6].
Let 2,,---, 2y be a random sample of size N from the distribution funec-
tion F'(x, 6), and let t(x,,- - -, xy) be complete and sufficient statistic for 6.
Then P{z,=2a,, ;=a,---, £, =a; |t} is the unbiased minimum variance

estimate (UMVE) of the product [ [L— F(as, 6)], k<N.
=1
In particular if x has the density

17) f(z, m, 0)=(1/o) exp {—(x—m)/s}, 2>m, 6>0,
then we require an UMVE of (S(a))*, where

(18) S(a)=S:° f(z, m, o)z .

If %), %2, -+, xy, With z,, smallest, are N observation from (17), then
we know that the pair (zy,, Y=(2;+ -+ +25y—(N—1)2,)/N) is complete
and sufficient for the pair (m,¢). The conditional density of x,,---, zy,
given x,, is

(19) Sy, -+, 2y | ®)=N""a""Yexp {_é (ﬂ?t—xm)/"} .

The distribution of the reduced statistics d,=(x,—2)/NY, j=2,---,N
is.identical with that of (N—1) random intervals on a unit line, and
hence

N-1
(20) f(az,“';51v-1)=(N—2)! ’ "22:16,=1 .
It follows that the density of any one 4, is
(21) f@)=(N-2)1—-5,)*"*, j=2,---,N,
or the density of &, (§;,—xy)/NY=4,, j=2,.---,N is
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(22) 12w, V)=(N—2)(NY—(&,— )" (NY )",

where (§,—2,,)<NY. The density (22) is termed by Laurent as an ex-
ponential analogue of Thompson’s [7] symmetric beta density. A certain
class of statistics associated with exponential type populations and in-
dependently distributed of complete and sufficient statistics have beta
type distributions, which are termed by Laurent as generalizations of
Thompson’s distributions. These generalized Thompson’s distributions
have wide applications in UMVE problems, outliers rejection problems,
nuisance parameter removal tests construction problems, and distribu-
tion characterization problems. For the exponential population Laurent
[3] uses (22) for survivor probability UMVE estimation and also as
outlier rejection criterion. The suspected outlier being z, where z is
any one of the values x,,---,zy. Since (£, —24,)/NY is nuisance
parameter ¢ free, the distribution of (¢,—z,)/NY may be used to test
m=0, ¢ unknown. Recently Laurent and Gupta [4] have utilized the
independence of (§;,—2,)/(NY), and the pair of complete and sufficient
statistics (zy,, NY) to characterize the exponential population. Since all
the statistics used in above problems by Laurent are reduced exponential
(ordered or not) statistics, the problems may be solved by using the
distribution theory of random intervals. From (22) note that P{¢,>«]|
Zay, Y} =(1—(a—2y,)/NY)"? is the UMVE of S(a). Similarly the prob-
ability (1—j(a—z4)/NY)"%, that a specified j of &’s each exceed a, given
zy, and Y, is the UMVE of (S(a)y’. It follows that the probability ¢,
that at least £ of the random intervals from (21) will each exceed «
where, by using (5),

N-1\%} x(N—=1—k\/ k Ja—2zq) \¥?
B a=(V) B (V) - )
(23) e I E (—1) ik N3 NY
=P{0w-rin2a},
is the UMVE of the probability that at least k values out N from (17)

will each exceed «. Note that dy_;4, is the (N—k+1)th reduced ex-
ponential order statistics considered by Laurent.

Similarly by using expressions of the type
(24) R(a, .B)=P{x(¢)ga, XS B)

_§ % NUF(a OVIF(@, 0)—F(a, O "5[1—F(, 6))°
P = r!SI(N—r—S)! ’

where a<8, and 2, <% <::- <&y, are ordered variables from F(zx, 6),
we may be able to derive UMVE for R(a, g), provided ¢ admits a com-
plete and sufficient statistic. Thus using (16) with i=N—k+1, j=N—
k+2, we may give UMVE for the probability that at least k¥ observa-
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tions from (17) will each exceed «, while at least k—1 of these will be
less than 8.
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