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Summary and Introduction

Type (B), asymptotic independence property of order statistics as
the size of sample increases is investigated in both non-censored and
censored cases. The results [1], [2], [8], [4], [6] hitherto obtained in non-
censored cases are improved. So far as the authors are awared, the
property has not been investigated in literature for censored samples.

Let X,<X;<:--< Xy be order statistics based on a random sample
of size N drawn from a univariate continuous distribution with cdf. F'(x)
and pdf. f(x). The results [1], [2], [8] have been improved by Homma
[4] in the form that X, and X,_,,, are asymptotically independent in
somewhat weaker sense than type (B), as N increases indefinitely, provided
that n/N—y, (<1) and m/N—0, or that n/N—0 and m/N—yu, (<1).
On the other hand, Ikeda [5] showed that X,=(X;,---, X,) and Y,,=
(Xy-ms1s* + +» Xy) are mutually asymptotically independent (B), as N— oo,
if n4+m=0(¥N).

In the present article, it is shown that under the same conditions
as in [4] X, and Y, are asymptotically independent (B), as N— oo,
and as a consequence it is also shown that the set {X.,, Ziw, Ym) is
asymptotically independent (B), as N— oo, if n/N—0, m/N—0, k[N—2
and A/N—p (0<2, p<1; 24p<1), where Zin=(Xi, Xes1, ***y Xesn_1)-
Similar results are obtained in singly and doubly censored cases, too.

In Section 1, some preliminary results are stated, which are useful
in the subsequent sections. In Sections 2 and 3, two cases of type I
censoring are treated. In Section 2, a fundamental result is shown on
asymptotic independence (B); of a set of lower and upper extremes in
a doubly censored case from the top and the bottom; results in singly
and non-censored cases are obtained as limiting cases. In Section 8, we
consider the case of a singly censored sample of type I where the middle
part of the sample is censored. Section 4 is devoted to discussion of
the asymptotic independence (B); property of censored sample of type
II.
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1. Preliminaries

In this section, we list up some well-known results on integral cal-
culus and infinite series in Lemma 1.1, and results on asymptotic in-
dependence (B), in Lemmas 1.2 and 1.3, which are useful in later
sections.

LEMMA 1.1. (i) For positive integers p and g,

- Y1 =___F(P)F(¢1) I 1
L1 Sozi’ (1) log sde=—ZBE D 512

(ii) For integer p=2,

P
1.2 =C 1 Sers ,
-5 e B s

where C denotes the Euler constant and a,., are defined by

(1.3) a,=lsz(1 (@2—2)---(r—1—2dz, (r22).

(iii) For a, defined above,
(1.4) I'(r-1)/6r=a,sI'(r)/6r, (rz2).
(iv) For positive integer p=2,

= I'(+1) _ 1
1.5 )
(1.5) = T(p+1+i) (p—1I(p)

Using the formula (1.2), we get for positive integers p=2 and ¢

L _1 P \_ q P
1.6 —+lo T(p+q) + T(p) ,
(1.6), p(g{ 7 Hlog q) 210 (p‘ 9) +T(p)

where T(p) is defined by

1.7 T(p)=3 Bty , 2).
) =2 @1D) @19 (»22)

Since it holds by (1.4) and (1.5) that

1 rG+1)
0<T(p)_ E L (p+1)---(p+1)(i+1)
r(p+1) S _Le+l) ___p

6 i I'(p+1+i) 6(p-1)’

the series T(p) is absolutely convergent for any integer p=2. More-
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over, the sequence {T(p); p=2, 3,---} is monotone decreasing, and hence,
is convergent.

Now, some results on asymptotic independence (B), of a set of
random variables are stated. As for the notions of asymptotic equiva-
lence (B), and asymptotic independence (B),, reference should be made
to Ikeda [6].

For each positive integer s, let (X¢, Yé,, Z4,) be a real random
variable defined over the (n,+m,+n,)-dimensional Euclidean space, R, .
nytng=Reny X Reny X R, where my, m, and n,; may vary depending on s.
Then, it is shown [5] that the asymptotic independence (B), of the set
{X&ps Yép, Z5p} as s—oo implies the same type of asymptotic inde-
pendence of the set {X(.,, Y, Zény)}, Where the variables in the latter
set are marginal random variables of those of the former set, respec-
tively, and m,, m, and m,; may depend on s. Furthermore, it is not
so difficult to show that, if {X%,, (Y&, Zay)) and {YG,), Z5,} are both
asymptotically independent (B),, then the set {X(,, Y4,,, Z&,)} is asymp-
totically independent (B); as s— oo.

We shall consider a slightly different situation. Let I, be a count-
able set of discrete points of R,, and let W¢, be a random variable
defined over I,,, the o-field of subsets of I, being defined to be the
class of all subsets of I,,, where » may be assumed to be dependent
on 8. Given Wi,=wu, a conditional random variable, (X&5, Y45, Z255),
is distributed over the Euclidean space R in:ny, Where m;, m, and n,
may be dependent on s, but not on wg,,. Let us designate the joint
variable of these random variables by (W¢,: (X&5, Y&5,Z255)), which we
denote, for the notational simplicity, by (W*: (X%, Yv, Z¥)).

Under this set-up, the asymptotic independence (B), of the set {X3,
Yy, Z%}, or more precisely, {(W*:X3), (W*:Y3), (W*:Z})}, should be
understood to mean the validity of the condition

(L8 sup| X POV'=w)(Pi(E)—QuE)| 0, (=),

where the supremum is taken over all subsets, C, of I,, and all subsets,
E, of Ry in+np, belonging to the usual Borel field, and P and @ de-
signate probability measures corresponding to the conditional variables
(X:,Y:, Z:) and (X3)(Y:)(Z:), respectively, the latter being an (m,+
my+n,)-dimensional real random variable, say (X’ L Y, Z'), such that
{X*, Y, Z*} form an independent set and the marginals are identically
distributed with those of (X3, Y., Z.), respectively.

First, we state the following

LEmMMA 1.2. (i) If {X3,Ys,Zi} 8 asymptotically independent
(B), as s— oo, so0 is (X, Yy, Zy} too, where the latter is a set of mar-
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ginals of the former in the sense that the conditional random wvariables
X:, Yi and Z:, given W'=w, are marginal variables, respectively, of
X, Y. and Z;,.

(ii) If both of the sets, { X3, (Y3, Zy)} and {Yy, Z%), are asymp-
totically independent (B), as s— oo, so 1s the set {X},,Yy, Z}} too.

PROOF. The first result (i) is straightforward.
We prove (ii). It is easily seen, in the first place, that the condi-
tion (1.8) is equivalent to the condition

(1.9) > P(W'=w)(Pi, Qu: B)—0, (s—),

w € In)

where
0u(Ps,, Q2 B)=sup | Pi(E)—QL(E)|,
i EeB

B being the Borel field of subsets of Ry in+ny. In fact, the left-hand
members of (1.8) and (1.9) are equal to each other.
As was shown in [6], it holds, in general, that

04 P, Q: B)=0,P, Q: A)

for any probability measures P and Q, where A is the class of all finite
disjoint unions of (n,+n,+ns)-dimensional rectangles, left-closed and right-
opened. Since any set A belonging to A can be expressed in the form

N

A=>(4,;XAy), where A, 1=1,---, N, are mutually disjoint subsets
i=1

belonging to A;=Aq, and Ay € Ay=Aqny, t=1,---; N, we have

| PNY, Z3) (A) — PX)(YE)(Z2) (A) |
<31 PR(A,) | PO 2 (4,0 — PODE (44
=1

from which it follows that
So(PXNYs, Z0) ) pXS)(YI)ZD): A)=5,(P(Ysr Za), P(Ya)Z): 4,) .

Now, since
2 P(W.=W)54(P':n Q:u: B)

w € Itw>

S 3 P(W'=w)d(Ps, PXs Y Z0): B)

w e Itny
+ 3 P(Wi=w)s(PYe Z), p(YI)ZD): 4,) ,
w € Itn
and the conditions of the lemma imply that the two members of the
right-hand side of this inequality tend to zero as s— oo, we have (1.9),
which completes the proof of the lemma.
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Suppose in the next place that (X3, Y3, Z:) is absolutely continuous
with respect to the Euclid-Lebesgue measure, g, over R=R 1n4np, fOT
any given s and w. Let us denote by f.i(z, ¥, 2), fur(®), fuiy), and fis(2)
the pdf.’s of (X3,Y:,Z:), X, Y: and Z:, respectively. Then, the
Kullback-Leibler mean information is defined by

g o)) — 8 fu:(x9y’z)
(1.10) I(P: ,,,)—SR #(x, ¥, 2) log T @ N D dy,

for which it holds [5] that
04(Ps, Q% : BY<I(P:: Q) .

Hence, by applying the Cauchy-Schwarz inequality to the left-hand
member of (1.9), we obtain

1/2
S POV'=w)idPi, @i B)S| B POV'=w)I(P: Q%) |
w € In) w € Itm)

Thus we can state the following lemma, which gives us a criterion for
the asymptotic independence (B), of {X}, Y+, Zy} as s—oo.

LEMMA 1.3. The set {X%,Yy,Zy} is asymptotically independent
(B); as s— oo, if it holds that

(1.11) S PW=w)I(P;:Q.)—0, (8—00),

w € In)

2. The case of type | censoring (1)

We consider two cases of doubly censoring of type I. Let X;<X,<

.+ <Xy be order statistics based on a random sample of size N drawn

from a univariate distribution whose cdf. and pdf. are given by F(x)

and f(z). Let a and B be preassigned extended real numbers such that
F(a)<F(B).

Case 1. The variables X,’s such that X;<a or <X, are censored.
Thus, if F(a)=0 and F(8)<1, we have the case of singly censoring from
the top; if 0<F(a) and F(B)=1, we have the case from the bottom;
and if F(a)=0 and F(8)=1, it turns out to be the case of non-censoring.

Case 2. The variables X,’s such that a<X;<pB are censored.

According to Sarhan-Greenberg [8], these types of censoring are re-
ferred to as ‘type I censoring’.

In the present section, we consider the case 1.

Suppose, in case 1, that Xy <X, <---<Xg,._ are observed, where
the initial number, S, and the number of variables observed, L, are re-
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garded as random variables, whose probabilities are given by

N! - -
2.1 ,l= tllNll+1’
1) P D= N - 7

(1=8=N; 0=I=N-s+1).

Here, we have put é=F(a), =F(8)—F(a) and {=1—F(8). Under the
condition (S, L)=(s,l), X,<X,;;<---<X,,,-, are order statistics based

on a random sample of size [ drawn from a doubly truncated distribu-
tion, whose pdf. and cdf. are given by

f@fy, if asx<B,

9(x)=1 _
0, otherwise ,
and
0, if z<a,
G(x)={ (F(x)—F(a)/n, if as2<p,
\ 1, if p<x .

We are now interested in the asymptotic independence property of
the set of size 2

(2°2) {X(n) —(XS 9%y XS+n-—l)i Y(fnSLz(XS+L—m1 ct XS+L—])} ]

where n and m are positive integers which may depend only on N and
not on the realizations of (S, L). When L<n+m, the above set is con-
sidered to be a set of size 1, i.e., the joint distribution of the whole
sample, and we shall make a convention that a set of size 1 is always
asymptotically independent (B),.

As was stated in the preceding section, asymptotic independence (B),
of the set (2.2) is defined to be

23 sup| 3 pals, YPUV(E)— 3 pa(s, DPY"(E) |0,
Iéeg (s,)e K (s,)eK

as N— oo, where I’={(3, 7) : 1=0, =0}, B denotes the usual Borel ﬁeld
of subsets of the (n+m)-dimensional Euclidean space, and U*'=(Xy’,

Y& and Vai=(X&H)(YEL). Then, by Lemma 1.3, it is sufficient for (2.3)
to hold that

(2.4) 2 pa(s, DIU* : V) -0, (N— o).

l2n+m

Now, we shall prove the following

THEOREM 2.1. The set (2.2) is asymptotically independent (B)s, if
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n/N—p and m/N—O0, or if n/JN—0 and m/N—p, as N— oo, where p
18 any given number such that 0= p<7.

PROOF. Since the conditional variables, G(X))<G(X,4)<---<
G(X,.1-1), given (S, L)=(s, 1), are order statistics from a uniform distri-
bution over (0,1), it is easy to see that the Kullback-Leibler mean
information in (2.4) becomes

(2.5) U : VY=Lx(l)+ Lx(l), (2n+m),
where
o I—n4+ LI (—m+1)
(2.6) Lv()=log L D ra—n—m+1)
and
—(—m 1 ey 1
@.7) )= 3 =i+ -m 5
—l—n—-m)> 1

S l-n—m+1

Since these values are independent of s, the condition (2.4) is implied
by the condition

(2.8) 2 p IO+ Ea) 0, (N—),

where py(l) are the probabilities of L given by .

(2.9) puD)=(Y Jra—ny=,  0si=N).

Let us put
Wye={l: N(p—e)=I=N(p+e)},

and let W5, be the complementary set of Wy, with respect to the set
of all non-negative integers, where ¢ is an arbitrarily fixed number such
that 0<e<p—pg. Then, by [7], it holds that

(2.10) P (W5, ) <27

for any given N.
Suppose N be large. Then, for each ! belonging to Wy,., we have,
by the results in Lemma 1.1 and the Stirling formula,

(2.11) | (Ln(1)+ La(1)) — (Jia (D) + Jen(1)) |£1/31—n—m) ,
where

(2.12)  Jx(1)=(1/2){log (1 —n/l)+log (1—m[l)—log (1 —(n+m)/l)}
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and
(2.13) Jn(D)=TA—n)+Tl—m)—Tl—n—m)—T1) ,

T(p) being the same as that defined by (1.7) in general. From (2.12) it
is readily seen that

Sup lJuv(l)Iélsup nmfll—n—m)

N se “Wrye

s=nm/2(n—e)(p—e—(n+m)/N)N*?,
from which we obtain

(2.14) sup |Jin(l)|—0, (N—o0).
(WN"

Since T(p) is monotone decreasing with increasing p, we have

sup | Jow(l) [=2{T(N(p—e)l—n—m)—T(N@+e)D},

where [ ] designates the ordinary Gauss symbol. Hence, the conver-
gence of the sequence {T(p); p=2, 3, -} and the conditions of the the-
orem imply that

(2.15) sup |Jon(l)|[—0, (N—>oo).

lsWN,'

It then follows from (2.11), (2.14) and (2.15) that
(2.16) 3 p) D+ E(1) -0, (N—c).
VN

Now, for le W5 ., since L(I1)<0 and |Ly(l)|=<3N? by (2.7), we have
z %c pr(D) (in()+ Ln(1)) <3NP (W5, .

EWnrye

Hence, by (2.10) it holds that
(2.17) %c Pr(D)(Lin(1)+La(1)) >0,  (N—0).

leW§,,
Thus, from (2.16) and (2.17) we get (2.8). This completes the proof of
the theorem.
By using Lemma 1.2, the following is an immediate consequence of
the above theorem.

COROLLARY 2.1. Let n, k, h and m be positive integers depending
on N in such a way that n<k<k+h—1, n/N—0, m/N—O0, k/[N—2i and
h/N—p, where 2 and p are any given numbers such that £§<1<1—{
and 0<p<n+&—2. Then the set of size 3
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(2.18) {X& =Xs,++y Xosnot)y Ziy =Xy + -y Xewno)s
Y('zi)L=(Xs+L-m, Tty XS+L-1)}
18 asymptotically independent (B); as N— co.

The following results in singly censored cases of type I are also
direct consequences of the above theorem.

COROLLARY 2.2. (i) Suppose that the sample are censored from
the top by B. Then, the set

(2-19) {X(fl):()(l, Tty Xn), Y(fn):(XL_mn: Tty XL)}

18 asymptotically independent (B), as N— oo, provided that n/N—p and
m|/N—O0, or that n/N—0 and m/N—p, where p is any given number
such that 0= p<F(B).

(ii) Under the same situation as in (i), the set

(2.20) {X(ﬁ):(Xu o, Xo), Zk%h)=(Xk’ <oy Xipnet)s
Y(fn)z(XL—mH’ Tty XL)}

18 asymptotically independent (B), as N— oo, if n/N—0, m/N—0, k/N
—2 and h/N—p for any fized number 2 and p such that 0<A<F(B)
and 0=p<F(B)—aA.

(iii) Suppose the sample be censored from the bottom by a. Then,
the set
(2021) {X(ﬁ)=(Xs 1%y XS+1|-—1)’ Y(fn)z(XN—m+l9 Sty XN)}

1s asymptotically independent (B), as N—oo, if n/N—pu and m/N—O,
or if n/N—0 and m/N—py, where p is any given number such that
0= pu<1—F(a).

(iv) In the same situation as in (iii), the set
(2.22) {X(ﬁ)z(Xs vty Xsgnot)s Zkfh):'(Xm cooy Xegno1)s

Y(fn):(XN—mH, <oy X))

18 asymptotically independent (B), as N— oo, if n/N—0, m/N—0, k/N
— 2 and h/N—p for some 2 and p such that £<i<l and 0<p<l—A.

The following theorem gives the results in non-censored cases, and
is an immediate consequence of Theorem 2.1.

THEOREM 2.2. (i) Let X,<X;<---<Xy be order statistics based
on a radom sample of size N from a univariate continuous distribution.
Then, the set

(2.23) {X(n)z(le tt %y Xn)’ Y(m):(XN—m+ls tt Y XN)}
1s asymptotically independent (B), as N— oo, if n/N—p and m/N—O0,
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or if n/N—0 and m/{N—p, where p is any given number such that

0=p<1.
(ii) In the same situation as in (i), the set
(2.24) { X=Xy, Xo)y Ziean=(Xie»* * *y Xisn-1)s

Y(m)z(XN—m+l’ ) Xn)}

18 asymptotically independent (B); as N— oo, if nfN—(Q, m/{N—0, k/N
—2 and h/{N—p, where 2 and p are any given number such that 0<2
<1 and 0=pu<l-a.

The result (i) of this theorem implies all the results hitherto ob-
tained [1], [2], [3], [4], [6]. For (i), evaluation of approximation error is
given by

(2.25)  0((Xew» Yem)s (Xew) (Yem)) S (X » Yem) 1 (Xew) (Yem))]2

Some of the values of the right-hand member of this inequality are
tabulated below.

Table 1. Error evaluation in non-censored cases (g=n/N)

N }{ 0.10 0.20 0.30 0.40 0.50 0.60 0.70  0.80

10

-

0.07583

0.03344 0.05017 0.06572 0.08201
0.04782 0.07179 0.09411
0.05922 0.08898

0.07822

g
GTWN -

0.02362 0. 0.04635 0.05784 0.07086 0.08680
0.03359 0.05038 0.06600 0.08242

0.04800 0. 0
0.06456 0.09712
0.07850

100

-
ISESEN T

0.01926 0.02887 0.03784 0.04725 0.05777 0.07078 0.08839
0.02733 0.04100 0.05369 0.06704 0.08214

0.03895 0.05847 0.07664 0.05971

0.04807 0.07228 0.09467

0.06638 0.09976

0.07873

150

Q=N

=

0.01654 0.02482 0.03261 0.04097 0.05000 0.06117 0.07634
0.02355 0.03542 0.04645 0.05810 0.07106 0.08711

0.02901 0.04357 0.05713 0.07140 0.08745

0.03769 0.05665 0.07427 0.09281

0.04811 0.07232 0.09483

0.06474 0.09746

0.07873

200

O oUW =

DD =

1 0.01353 0.02041 0.02661 0.03345 0.04088 0.04993 0.06248 0.08162
2 0.01932 0.02877 0.03785 0.04755 0.05787 0.07093 0.08867
3 0.02374 0.03547 0.04674 0.05840 0.07125 0.08724
300 5 0.03071 0.04598 0.06045 0.07560 0.09248
8 0.03929 0.05867 0.07696 0.09621
13 0.05055 0.07564 0.09921
21 0.06507 0.09768
30 0.07905
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3. The case of type | censoring (2)

In this section, we consider the case 2 of type I censoring stated
in the beginning part of the preceding section.

Let a and B be any preassigned real numbers such that 0<F(a)<
F(8)<1, and the variables X; such that a< X;<p be censored. The ob-
served variables are then grouped into two parts,

0,: X< - <X, (La), and 0,: () Xy_ru< <Xy,

where L and T are random variables whose probabilities are given by

N! -
(3.1) ol t):melﬂh' g, 0=, t, I+t<N),
with é=F(a), y=F(8)—F(a) and {=1—F(B) as before.

Under the condition that (L, T)=(,t), two groups of conditional
variables, O, with L=l and O, with T=t, are stochastically independent
of each other, and they can be regarded as order statistics based on
random samples of size I and ¢ drawn from truncated distributions,
whose cdf.’s are given by

F(x)/¢, if z<a,
G(x)= {
, otherwise ,
and
(F(x)—F@p)/C, if s,
Gz<m)={
0, otherwise ,
respectively.

Now, let us consider a set of size 4 of extremes
(3.2) { X&T=(Xy Xy Y= (Xpmatre -+ Xi)
. Us™=(Xy-rs1,°*+, XN—T+IJ)’ V(girz(XN—q+lv cee, Xy)

As in the preceding section, type (B), asymptotic independence of this
set is guaranteed by the vanishing, as N— oo, of the quantity

(3.3) o2, Pl OU((Xas, Yid) (XG5 (Y65)
tzpt+aq
+I(Us, Vi) - Ua) (Ve

where we have used the fact that the variables, O(L=I) and O(T=t),
are mutually independent. Furthermore, for the vanishing of this quan-
tity, it is sufficient that
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B4) 3 o)X, Vo) : (Keo) (V)
+,3, PO LU, Vi) W) (Vi) =0, (N—eo)

where py(l) and pn(t) are the probabilities of marginals, L and T, re-
spectively, which are binomial B(N, ¢) and B(N, {), and we have deleted
the unnecessary suffices ! and ¢ from the conditional variables in (3.3).
Analogous calculation to that of the proof of Theorem 2.1 shows
that the two members of (3.4) tend to zero as N— oo, if it holds that
n/N—p, m/{N—0, p/N—y, and ¢/N—O0 for some g and p,.
Thus, we get the following

THEOREM 3.1. Suppose that one of the following conditions is satis-
fied: (a) n/[N—p, m/{N—0, p/N—p, and ¢/N—0, (b) n/N—0, m/N—
1, pIN—p and g/N—O0, (¢) n/N—p, m/N—0, p/N—0 and q/N—p,,
and (d) n/N—0, m/N—oyp, p/N—0 and g/N—p, as N— oo, where p
and p, are any given number such that 0=y, <¢ and 0=y, <{. Then,
the set (3.2) 18 asymptotically independent (B), as N— oo,

By Lemma 1.2, the following is an immediate consequence of the
above theorem.

COROLLARY 3.1. The set of size 6,
(3.5) {Xas™) Zity s Yas'» U™ Wiy » Vs ™}

where Z:g5 = (Xi, +++) Xyyn-1) and Wity = (Xy-r40r** "y Xnorioruat)s 18
asymptotically independent (B), as N— oo, provided that n/N—O0, kN
— 4, h/N—y, m/|N—0, p/[N—0, v/N—>2,, u/[N—>p, and g/ N—0 for
any fized 2y, A, p and p, such that 0<4,<&, 0 <E—2y, 1—6—9<A<1,
and 0=, <1—3,.

4. The case of type Il censoring

Suppose that p-fraction (in number) of the whole N variables are
censored from the top, or from the bottom. Such a censoring is called
the type II censoring. It may also be the cases of type II censoring
that the variables of p-fraction from the top and of g-fraction from the
bottom (p+q<1) are censored.

In the present section, we shall consider the asymptotic independ-
ence (B); property of censored samples of type II, for which the frac-
tions of censoring depend on N in general.

Let, as before, X, <X,<-.--<X, be order statistics based on a ran-
dom sample of size N drawn from a univariate continuous distribution,
whose cdf. and pdf. are given by F'(x) and f(x), respectively. The
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first P and the last @ variables are supposed to be censored, where P
and Q may depend on N. Observed variables are thus X, <Xp <" -
< Xu_q

In this situation, we consider the set

(4-1) {Xm)=(XP+1 1"y XP+n)1 Y(m)=(XN—Q-m+l; tt XN—Q)} ’

where #» and m may depend on N. The Kullback-Leibler mean information
for criticizing the asymptotic independence (B); of this set is seen to be

4.2) I(Xws Yem) : (Xew) (Yemo))
. I(N—P—n+1)[(N—Q—m+1)

=1
% F(N+)I(N—P—Q—n—m+1)
+N-P-m) S Lt (N-@-m) S L
" & N—P—nti =t N—Q—m+1
P+Q+n+m 1

—(N—P—Q—n—m)

& N—P—Q—-n—m+i

Through the above calculation, we notice that, so far as the Kullback-
Leibler mean information is used as a criterion, the asymptotic inde-
pendence (B), properties of the original (non-censored) sample are pre-
served through type II censoring, or, in other words, type II censoring
does not affect the property of the original sample, except for the
numbers of variables under consideration. In fact, the quantity (4.2)
tends to zero as N— oo, if (P4n)/N—p (=0) and (Q@+m)/N—0, or if
(P+n)/N—0 and (Q+m)/N—yu (=0), and hence, these conditions imply
the asymptotic independence (B), of the set (4.1). This result is a re-
statement of Theorem 2.2 (i), in which » and m are replaced by P+n
and Q+m, respectively.
This consideration leads us to the following

THEOREM 4.1. (i) The set (4.1) is asymptotically independent (B),
as N—oo, if (P+n)/N—p and (Q+m)/N—O0, or if (P+n)/[N—0 and
(Q+m)/N—p, where p is any given number such that 0=p<l.

(ii) Suppose that (P+n)/{N—0, k/[N—2, h/N—pu and (Q+m)/N—O0,
where 2 and p are any given mumbers such that 0<i<1 and 0=p<1-—A.
Then, the set

(4.3) {Xws Ziawrs Yem}
18 asymptotically indendent (B); as N— oo, where Zyu=(Xi,***y Xitr-1)-

In the case of type II censoring, where the variables X; with P<
1< N—Q are censored, we can state the following

THEOREM 4.2. Suppose that P/IN—p, and Q/N— p, as N— oo, where
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p1 and p, are preassigned positive numbers such that 0<p,, p;, py+p:<1.
(i) The set

(4'4) {X(u)z(Xlr Tty Xn)’ Y(m)z(XN—-m+lv Ty XN)}

18 asymptotically independent (B), as N— oo, if n/N—p, and m/N—O0,
or if n/N—0 and m/N—p,, where p, and p, are any given numbers
such that 0<p,<p, and 0=, <p,.

(ii) The set

(4'5) {‘X(n) ’ Z(h1+h.2) ’ Y(m)}

18 asymptotically independent (B);, as N— oo, if n/N—0, hy/N—p,, hy/ N
—uy, and m/N—O0, where Z(hl+h2)=(XP—h1+ll cooy, Xp, XN—Q+1’ te ey XN_QM,)p
and py and g, are any given numbers such that 0<p,<p, and 0=, <p;.

Finally, we give some remarks.

Remark 1. All the results obtained in this paper are still valid if
we replace such a condition as p/N—p (20) by limsup p/N=p. For
N—oo
instance, Theorem 2.2 (i) holds true if the condition n/N—pg, or m/N
—p, is replaced by the condition lirlrvl supn/N=y, or limsup m/N=g,
—00 N—oo
respectively.

Remark 2. All results of this paper seem to be optimum in the
sense that the conditions there can not be weakened any more. For
example, in Theorem 2.2 (i), if n/N—pg (>0) and m/N—p, (>0), then
the set (2.23) is not asymptotically independent (B), as N— oo, which
will be noticed by considering the fact that the joint distribution of
ayX,+by and cyX, +dy converges in law to a dependent normal distri-
bution of two dimensions for some sequence of real numbers, ay, by,
¢y and dy.

Remark 3. Since for any distributions X and Y it holds that
3(X,Y; BIS(1—-p(X, Y)'=I(X:Y)",

it is more desirable to use the Matusita affinity o(X,Y) for criticizing,
and for estimating the error of, asymptotic independence (B), of a set
of variables. The values of Table 1 of Section 2 are expected to be
reduced if we use, instead of (2.25), the inequality

6d(U(n,m)1 I,('n,m) . B)é[l—Pz(l](n,m)’ I/'(n,m))]l/z ’

where Ue,m=(Xtn» Yem) and Ve, my=(Xcw)) Yem), although certain difficul-
ties exist in calculating Matusita’s affinity.

Remark 4. The investigations we have done in this paper would
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contribute to the asymptotic distribution theory of order statistics, and
also to statistical inference by using the theory, which will be worked
out in the forthcoming papers.
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