SOME NONPARAMETRIC CONSISTENT ESTIMATES
FROM CENSORED SAMPLES

Koiti TAKAHAS!

(Received June 19, 1970)

1. Introduction

In some cases it happens that only the smallest observations in each
sample can be obtained (cf. David [2]). When considering the cost or
the time of an experiment it also happens in some cases including life
testing that an observation of the minimum in a small sample can be ob-
tained more easily than, or, at least, as easily as, an observation of a
sample of size one (cf. Takahasi and Wakimoto [7]).

David [2] considered the estimation of means of normal populations
from 7 observations each of which is the minimum of m independent
N(y, ¢°) variates.

In this paper we shall give a method of obtaining nonparametric
consistent estimates for some problems of estimation from » observations
each of which is the kth least order statistic of a sample of size m from
a population. Some properties of the estimates obtained by this method
are discussed in Sections 3, 4 and 5 for the problems of estimation of the
cumulative distribution, mean and quantile of populations, respectively.

2. Derivation of consistent estimates

Let F(x) be a continuous cumulative distribution function (cdf). We
denote by F, .(x) the cdf of the kth least order statistic of a sample of
size m from the distribution with cdf F(x). We have (cf. Hoeffding
[3D

(1) Fos@=3} (") FlayI1— Fa)
:k<’,'c‘) SM $-H (1 — )™t .
0
It is easily seen that for any given continuous cdf F, (x) there is a

unique cdf F(x) which satisfies the relation (1). The key to our method
is this fact. Let
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—1 = S ’”.L JA—u)"7
(2) reaw=3 (% w—w
k() || e —tae
0

Denote the inverse function of y;'.(%) by 7,.(%). Using these notations
we can write

(3) Fo (@) =rm(F())
and
(4) F(x)=1m(Fn(x)) .

Denote the empirical cdf of a sample of size » from the F,.(x) by
Ff..x). By the central statistical theorem (cf. Loéve [4]) Ff, .(x)
converges to F), .(x) uniformly in z with probability 1. From this fact
and the uniform continuity of the function 7, .(%), (u € [0, 1]), the cdf
Ymi(Fk e n(2)) converges to 7, .(F, (x)) with probability 1 as » tends to
infinity, that is,

(5) Tt Fk %)) = F(2)

Thus we have for every bounded continuous function h(x) (cf. [4], p.182)
(6) S: M ®)d g, (F o k(X)) — 3: Wz)dF(z) ,

with probability 1.

THEOREM 1. Let h(x) be a bounded continuous function, let X; (1=
1,2,---, n) be independent and identically distributed with the cdf F,, ()
which 18 the cdf of the k-th least order statistic in a sample of size m
Jrom the cdf F(x) and let X, be the j-th least order statistic of {X,}. Define

an estimator of Sj h(x)dF(x) based on (X, X3, -+, X,) by

D Bl 5 .

Then the estimator T, is (stromgly) comsistent (¢f. Rao [5], p. 281) for
S'” hz)dF(z).

It should be noted that the quantity Sm h(x)dF(x) to be estimated

is associated with the distribution with cdf F(x) and on the other hand
the sample on which the estimation is based comes from the distribution
with cdf F, .(x).

To calculate the value of T, for a given sample we require the nu-
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merical values of 7, .(¢/n)—rm((1—1)/n), ©=1,2,---,n. Recall that the
function 7, .(u) is the inverse function of the polynomial 7;!.(u) of de-
gree m which is defined by (2). Hence we may use a table of incom-
plete beta function to calculate 7, (i/n)—7n((:—1)/n). On the other
hand it is not so difficult to solve the equation r;'(x)=i/n. For the
the case m=2 we have

(8) ri(w)=1—v1—u and raw)=vu .

3. Estimation of values of cdf

In this section we consider the problem of estimating Fl(x,) for
any fixed value z,. Let J(x; 2, be the indicator function of the set
(—o0, 2y]. Substituting J(z; x,) for h(z) in (7) we have

O Al =),

where s is the number of X, which does not exceed x,. Since r J(x;
2,)dF(x)=F(x,) we obtain the following corollary.

COROLLARY 1. The estimator A, given by (9) s (strongly) consistent
Jor F(x,).

Since F(x) is assumed to be continuous the discontinuity of J(x; x)
at =2, makes no problem in using Theorem 1 to prove this corollary.

The random variable s in (9) has the binomial distribution B(n,
F, .(x,)). Therefore we have the expressions for the moments of A,

10 E@)=3 (") Fus@) U= Fuse) 7s( L), =120

Since the function 7, . is bounded and continuous on [0, 1] we have from
a theorem on Bernstein polynomials (ef. Rivlin [6])

(11) Hm E(A,) =7mn,u(Fn«(20))
=F(x)=p, say.
This implies that the bias of A, tends to 0 as » increases. Using the

Tailor expansion about the point w=F, (%) and noting that 7%, .(7=(»))
=1/r:i(p) we have, for large n, approximately

(12) E(A2) —p=Foo(#0) (1= Fo (@)1, (Fm,1(20))/(21)

=7mi(D) =17 (D)rm e(rme(D))/(27)
and
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(13) E(4,— F(2,)) = Fp 1(20) (1 — F o 1(20)) . e F o, 1(20)) /10
=) A =12 (D) n
=7m(P) L= (@) {n(r2}(p))} -
From (13) the condition for which the mean square error of A, would

be smaller than that of the usual estimate based on a sample of size n
from F(x) is approximately

(14) Tm(P) A= (0)/{P(1 —D) =3i(0))'} <1 .

For example, in the case k=1, the condition (14) reduces to
(15) mig™~'—(m*'—1)g"—1>0,

where ¢=1—p.

It may be expected that the mean square error of A, would be
smaller than p(1—p)/n provided that F(x,) is close to k/(m+1). From
(2) we have

=3 (7)pa—r,

k-1 m _ m—
—ra)=5 (T)pa-p)
and
-1/ — m k—1 m—k
e =k{ T )P —pr .
The denominator of the left-hand side of (14) can be written as
G P —p)= [k (T )P —p)]
. {(m_k+1)(m_"",:;+1>pk—1(1__p)m—k+l} .
Assume that p=k/(m+1). Then it is easily seen that

max (M) p(—py= (] )pa—pr

0s/sk—1

and

max( )p’(l—-p)"" (m bt 1) Pl —p)m

kssis

Therefore we have

gl (?)P’(l—p)“" g(m—-k+1)(m _”7c+ 1)p»-1(1_ pyn-EH

and
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S (M- sk{T)pa-pm.

Thus we have proved that the inequality (14) holds if k/(m+1)=F{(x,).

4. Estimation of means

In this section we shall treat the problem of estimation of means.
From Theorem 1 we have the following corollary.

COROLLARY 2. Assume that the support of F(x) is bounded. Then,

By ) res 50

%8 a (strong) consistent estimate of the mean of F(x).

In order to apply Theorem 1 to the estimation of means we as-
sumed that the cdf F(x) has a bounded support. We can, however,
show the consistency of B, for some special cases where the support of
F(z) is not bounded. Assume that F(z)=1—exp(—2/f) and k=1. In
this case F, (x) is also the exponential distribution with the scale param-
eter 8/m. Therefore, we can express the mean and the variance of B,
explicitly. It is well known that

an E(X,)=2"-5_1
m =t n+1—j
and
_e & 1
(18) ggjv (X({)r XJ))—W‘EW .

From these expressions we have

(19) E(B)="n"'3 ( _h—1 )—Ha/m
" m h=1 n
and
(20) Var B,= (%)’n—t/m ,"21 (n+1— f)@m-s
= (L)’n—llm i: JUm-2
m i=t1

It follows that
(21) lim E(B,)=¢

and
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(22) lim Var B,=0.

n—soo

Thus the estimator B, is (weakly) consistent in this case. Further as-
sume that m=2. Then, from Theorem 1 of [1] it follows that the
cdf of n(B,—EB,)/¥ Var B, converges to that of the standard normal
distribution.

5. Estimation of quantiles

In this section we assume that the support of F(x) is an interval
(it may be infinite) and F'(z) is strictly increasing on the interval. Then,
the pth quantile of F'(x) is unique for each p, 0<p<1. It follows from
(1) that the cdf F, .(x) is also strictly increasing on the same interval
and has therefore the unique pth quantile for p, 0<p<1l. The order
statistic X,,;,, where [np] is the greatest integer that does not exceed
np, is a consistent estimate of the pth quantile of F, ,(x) under the con-
dition of the uniqueness of the pth quantile (Wilks [8]). Thus we have
the following corollary.

COROLLARY 3. The order statistic
(23) | Co= Xty
18 a consistent estimate of the p-th quantile of F(x).

Let us denote the pth quantile of F(z) by £,(F). Note that
@) bt o(Fa) =6,(F) .

We assume further that F(x) has the derivative f(x) which is positive
on its support. The probability density function f, .(x) of F, .(x) is

(25) Fus®)=k( | F@) (1~ F @) (@) .

This implies that the cdf F, .(z) also satisfies the condition that the cdf
F, «(x) has the derivative which is positive on its support. For large
m, C,.=X<rm,;*k<p)p is asymptotically distributed according to

NG, (F),s 1a(®) A —170(0)/ (0 7,16 52, o(Fm,)))

(cf. Wilks [8]). That is, the estimator C, is asymptotically distributed
according to

(26) NELE), 1m0 A —r1a(D)/(nf 7 1 (E4(F)))

The usual estimator of £,(F') based on a sample of size n from F(x) is
the [np]th least order statistic of the sample. The ratio of the asymp-
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totic variance of C, to that of the usual estimator is

@27) SUEEFNrm(®) L —rae(P))
P(1—p) S (E:(F))

Since fo 1(®)=Fa (x)=72'4(F(x))f(x), the ratio (27) can be written as

(28) Im(P) (L —17(P)
P(1—p) (rmi(P))*

This coincides with the left-hand side of (14). Thus, we have a similar
result to the one mentioned in the last paragraph of Section 3.
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