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Summary

A relatively simple exact expression of closed form is obtained for
the variance ¢*(t) of the asynchronous counting distribution for a count-
ing period of length t, t>0, in an Erlang process. Useful bounds are
placed upon the error of the linear approximation to ¢*(¢). Implications
of these results are examined. In particular, a new exact expression
and related bounds are obtained for the mean function of the synchron-
ous counts (also known as the renewal function of the process). All
bounds given are sharp in asymptotic order of magnitude as the length
of the counting period is allowed to increase.

1. Introduction and preliminaries

Consider a series of events in which the gaps between events are in-
dependently distributed with a gamma density

(1.1) f(@)=0me =z Y (m—1)!  0<z<oo,

where @ is a positive constant and m a positive integer. If m=1, this
is a Poisson process. However, we shall assume m>1 and refer to such
a process as Erlang of order m.

Erlang processes arise for consideration in traffic flow theory (see
Haight [3], [4] and Whittlesey and Haight [11]), in queueing theory and
operations research (see Morse [8] and Jewell [5]), and in reliability the-
ory (see Mercer [7] and Cox and Lewis [1]).

Following Whittlesey and Haight [11], we mean by a counting dis-
tribution for the process a probability distribution which gives the prob-
ability of occurrence of » events in a given counting period n=0,1,.--.
We may define such a distribution for each choice of length ¢>0 for the
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counting period. Two types of counting distribution are distinguished,
the synchronous and the asynchronous, depending upon whether the count-
ing period begins just after an event, or at an arbitrary point in time.
In the synchronous case, with regard to the Erlang process, the prob-
ability of 0 events in an interval of length ¢ is the sum of the first m
terms of a Poisson (6t) distribution, the probability of 1 event is the sum
of the next m terms, etc. In the asynchronous case, the probability
v,(t) of m events in a counting period of length ¢ is ([8], [11]) given by

S (1 —eppre
(1.22) ut)="3 (1 m)e Oty k!
and, for n=1,
(1.2b) nt)= 3 (I—J—’fl—>e"‘(0t)’""+'/(nm+k)!.
k=—m+1 m

Discussion in Whittlesey and Haight [11] indicates that, especially for
applications such as traffic flow theory, it is the asynchronous case which
is more apropos to the count data typically collected in actual observa-
tion of a series of events (vehicle arrivals).

The theoretical analysis of the Erlang process has been carried out
by Nabeya [9], Goodman [2], Morse [8], Haight [8], Jewell [5] and
Whittlesey and Haight [11]. (Further discussion is available also in
Haight [4] and Cox and Lewis [1]). The present paper continues this
line of investigation, especially the work in [3] and [11], by resolving
some problems concerning the wvariance function of the asynchronous
counting distributions:

(1.3) At)=3) n’v,,(t)—(%)z, >0,

namely the variance of the random count in an arbitrary interval of
length ¢, for each fixed ¢>0. In (1.3) use is made of the fact that the
mean of such a count is simply 6t/m.
For the case m=2 we have the simple formula

6 ,1 1 _
1.4 Ft)=——F———e¥,
(L.4) O=2+1-1e
However, for an order m>2 there has not been available any such
simple formula for ¢*(f). Numerical approximations have been deter-
mined by Whittlesey and Haight [11] using as a starting point the exact
formula

0t 2

(1.5) o’(t)=%——(ﬁ> +on 5 B G- Dm2ie T

(gm+k)!
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Here it should be noted that the leading term of (1.5) is not the as-
ymptotically correct linear approximation to ¢*(t) as t— oo, so that the
remaining terms should not be construed as an “error of approximation”
in any sense. Below we shall obtain a new exact formula for ¢*(t) and
also obtain useful upper and lower bounds for ¢*(¢). These results are
given in the theorem of Section 2. In Section 3 we prove certain lem-
mas needed in obtaining the theorem. In particular, a closed-form ex-
pression is given for the probability that a Poisson variate takes a value
equal to a multiple of m. In Section 4 some implications of the theorem
of Section 2 toward the further analysis of the Erlang model are ex-
amined. For example, the results obtained for the variance function
@(t) yield analogous conclusions regarding the mean function of the syn-
chronous counts (otherwise known as the renewal function of the process).

2. The variance function @*(t)

A simple exact formula for ¢%(t) is obtained, yielding in addition use-
ful upper and lower bounds for ¢*¢). The derivation of these results
employs two lemmas which are given in Section 3.

Define
@.1) Am(z)='"2"—’°—(1—i) 3 €2 (m 5 +)!
k=1 m m / i=0
and
2.2) fa@)= ; 2 |(mj)!

for real-valued z>0. It is seen easily that the kth derivative f<”(2) of
the function f,(z) is given by

2.3) FP()= ;J 2™+ (g +m—Fk)!

for each k=1,2,--+-, m. On the other hand, by Lemma 3.2, the func-
tion f,.(2) has the expression

2.4) fm(2)=%?§-:e’“’-

where R=exp (27i/m), one of the mth roots of unity. This gives the
following alternative to (2.3):

(2.5) fP()=-L5" Rire®
m Jj=o

Combining (2.1), (2.3) and (2.5), and using the formula
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(2.6) "z",'lf_(1_i)=mz“1 ,
=t m m 6m
we have
-1, 1 _
2. A )="2"" 1 - ¢B,(2),
(2.7 (2) et T (2)
where
@8) B.()=% ¢ 3 L (1-F)p-n.
j=1 k=1 m m
We now proceed to reduce B,(z). Because of the relation
2.9) R-m=0J = Rk
we have
(2.10) 5 L(1—_’°.)R-n='"§ _’°_(1—_’°_) cos (jkw) ,
k=1 m m k=1 m m

where w=2z/m. Further, denoting the right-hand side of (2.10) by C,,
it follows from the relation C,=C,_, that

C,e™ +C,_;e2" 7 =C,e**=U"[2 cos (2 sin (jw))] .
Thus (2.8) becomes reduced to

2.11) B.()=3 e=U™ cos (zsin (jw)) 33 L(1 —L) cos (jkw) ,
i=1 k=1 m m

an expression purely real-valued in form.
Applying (2.11) in (2.7), we thus have, by contrast with (2.1), an
expression for A,(z) as a finite sum of (real) terms, namely

2.12) A (2)= mi—1 +_1__ o "‘24 U0 g (2)
ém* m =
where
(2.13) d,(z)=cos (z sin (jw)) ,:V‘:,l —lc—(l——’i-) cos (Jkw) .
=1 m m

Moreover, again utilizing (2.6), we have

@18  |A@-T=L] MDD poam 5o,

and we note that the right-hand side of (2.14) gives the sharp asymp-
totic order of magnitude, O(exp {—(1—cos w)z)}), for z— oo.
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The foregoing results shall now be applied to the function &(t).
Lemma 3.1 states that

(2.15) oz(t)=%+Am(ot) ,

and therefore by (2.12), (2.13) and (2.14) we conclude

THEOREM. For t>0,

2 __
(2.16) =2+ =1 g (o),
m em

where, with w=_2x/m,

@.17) B (0t)=—L 57 g-a-cmsmm cos (gt sin (jw)) S L(1 —L) cos (jkw) .
m J=t =1 m m
Further,
(2.18) | E.(6t) | < (m_16)(";7'2_‘1) ¢ Hein? (e/molot
m

and the bound in (2.18) is sharp in asymptotic order of magnitude as

t— oo,

The theorem may be used to obtain an exact expression of closed
form for &*(t), or alternatively it may be used to place simple bounds
on ¢*(t). In this regard, the following two corollaries are easily deduced.

COROLLARY 1. Ezact expressions for o*(t) in the cases m=2,3 and
4 are, respectively,

1 1 1 _
2.19 Fl)=—0t+——— e
( ) ® 4 8 8 ¢

1 4 4 V3 -
2.20 D=—0t+—-—_=_ ( ﬁt) ame
( ) ?) 9 27 27 cos 2 ¢

1 5 1 _ 1 _
2.21 ) =—0t+-2 — = Ot)e—0 — we
( ) ® 16 32 8 cos (¢t)e ?2—6

Similar results for higher values of m may be derived routinely by
the use of (2.16) and (2.17). However, observing that the nonlinear
part of 4*(t) tends to zero exponentially fast as ¢— oo, a convenient and
practical simplification is to replace the complicated nonlinear terms by
a simple bound appropriately tending to zero at the same exponential
rate as its exact counterpart. Thus
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COROLLARY 2. Upper and lower bounds for o(t) are given by /

_6t m—1_ (m=1)(m*—1) _sun?ce/mome
.22 Ft)=— + moe
(2.22) ® m? + 6m? 6m? ¢

In particular, bounds for the cases m=2, 3 and 4 are, respectively,

1 1,1 _
2 ) =—0t+—+—e,

(2.23) () i st5e

1 4 8 _
2. F)==— 4+ amee
(2.29) () 90t+27_27e

1 5 15 _
2.25 F)=—0t+—+—e",
( ) ® 16 32 32 ¢

which may be compared with (2.19), (2.20) and (2.21).

For given values of # and m, formula (2.22) indicates the appropriate
linear approximation to ¢*(t) and provides a good evaluation of its ac-
curacy. Previously, this linear function has been given by Jewell [5]
(his formula (76), with a correction) as an asymptotic expression for
#(t) and the accuracy has been investigated via electronic computer by
Whittlesey and Haight [11].

In contrast to (1.5), which is the expression given by Whittlesey
and Haight for numerical calculation of ¢(t), formula (2.16) involves only
a finite number of terms and, moreover, the leading terms are asymp-
totically equivalent to 4*(t), as t— oo.

The theorem given above provides a useful tool in the theoretical
analysis of the Erlang model. Topics in this regard are examined in
Section 4.

3. Lemmas
Here we prove two lemmas required in the previous section.

LEMMA 3.1. For t>0,

3.1) a’(t)=%+Am(0t) .

PROOF. By means of the identity
mj{(§ —1)ym+2k} = (mj+k)(mj+k—1)—(m—1)(mj+k)+k(m—k),
the third term of the right-hand side of (1.5) is calculated as follows;

i —ot © m - (m)m/+k
m & 2 2 hm 2kl
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=% "‘[(0t)’j (7)_ (m—1)0¢ 2 (”t.)]
®2) +§ 5t )Jﬁof"if
oo 3 B —mne 3 O]
+Am(0t)—7n1—;e‘" ) k(m—k)%.

But as
S km—k) O — 1y 5 @ — oty T O
k=1 k! =0 4! J!
(3.2) is equal to
L 10t —(m—1)6t1+ An(et) .
m

Hence from (1.5) we have (3.1).

The next lemma provides an expression of closed form for the fune-
tion f,(2) defined by (2.2). An expression of similar nature thus follows
for the quantity

e’ fu(2),

which is the probability of a multiple of m in a Poisson distribution with
parameter z. From a conversation with my colleague I. R. Savage, it
is clear that this lemma is well known, but a proof is included for com-
pleteness as no reference seems available.

LEmMMA 3.2. For z>0,
m—1
(3.3) =-S5 e,

where R denotes the mth root of unity exp (2ni/m).

ProOF. It is seen easily that f,(z) satisfies the linear differential
equation of order m—1

(3-4) w PR+ PR+ fa(R) ()=,

where f{(z) denotes the kth derivative of f,(z). The general solution
of the homogeneous equation is ([6], p. 142)

m-—1 x
YR)= X ce'”
=
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and a particular solution of the nonhomogeneous equation is clearly
y*(z)=ie‘,
m
so that the general solution of (3.12) has the form
Fa@) =t S e
m k=1

From the boundary conditions f(0)=1, f’(0)=0, f®(0)=0,---, the co-
efficients ¢, are found to equal 1/m for k=1, 2,---. Hence f,(2) has the
expression (3.3).

4. Further analysis of the Erlang model

The theorem in Section 2 has interesting implications for the the-
oretical study of the Erlang process. Several such aspects will now be
considered.

(i) The mean function of the synchronous counting distribution

Denote the mean functions of the synchronous and asynchronous
counting distributions, respectively, by a(t) and p(t). While () is sim-
ply 6t/m, a simple exact formula for a(t) has evaded discovery (see [3]).
Indeed, the problem is equivalent to that of giving a simple expression
for &*(t), in view of the relation

4.1) alt) =t G‘l"t ot )+——%,

which follows from formula (9) of [11]. Therefore, by the theorem of
the present paper, we may conclude a new exact expression for «(t) and
bounds on the error of the corresponding linear approximation to a(t).
This result is

COROLLARY 3. For t>0,
(4.2) a(t)_ﬁ—”"—2—1-+F (@)
where, with w=2x/m,

(4.3) F,(6t) =m2_: e~ (1meos St iy <z sin (Jw) —-é-jw)
Ji=

S %(1—%) sin <%jw> cos (jkw) .

k=1
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Further,

4.4) | Fa(0t) |< (m—1)(m'—1) g~ 2sin® (x/m)}oe
6m

and the bound in (4.4) 18 sharp in asymptotic order of magnitude as

f— o0,

The proof is routine and will be omitted. The result that «(t) has
the asymptotic linear approximation 6t/m—(m—1)/2m as t— oo is not
new, following by a standard result for a renewal process {X;} having
EX!<oo (see Smith [10], p. 248). Nor is it novel to have an exact ex-
pression for a(t), as there is a complicated power series given by Haight
[3]. However, in the present contribution we achieve a relatively simple
exact expression for a(t) and useful bounds on the error of the asymp-
totic approximation as t— oo.

(ii) A relationship between the parameters m and 6

Suppose that ¢t is fixed, say at the value t=t,, and suppose that the
mean a(t,) has a certain fixed value a,. Under the latter restriction, the
parameters m and 6 become functionally dependent. Let 8, denote the
value of 6, which is thus associated with the integer m (for m=2, 3,

-+). Investigating this relationship, Haight [3] has verified empirically
that 6, satisfies approximately the linear relationship given by

(4.5) Omtoiaom+—;—(m—1) ,

but also shows that the exact relationship cannot be linear in form.
Making use of Corollary 3, we corroborate these findings and evaluate
explicitly the accuracy of (4.5). From (4.2) and (4.4) it follows that

(4.6) 0mt.,=a0m+%(m—1)-—mF,,,(0,,,to)
with
4.7 | MF,(8at) | < __é_ (m—1) (m?— 1) e-2si0% x/mdtnty

In view of the sharpness property of (4.4), the approximation (4.5) is
valid only when the right-hand side of (4.7) is sufficiently small. Since
this quantity becomes small as ¢, increases but increases as m-— oo for
fixed ¢,, we conclude that for any fixed £, the relation (4.5) is valid for
a limited set of values of m but not for m indefinitely large.
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(iii) Correlation between the counts in two intervals

Let r(t,d) denote the correlation between the counts within two
intervals of length ¢ separated by an interval of length d, reference here
being to the asynchronous process. It is easily verified that

r(t, d)=[(2t +d)—20'(t +d) +7'(d)]/25(t) .

At this point the use of the linear approximation to ¢*(-) would yield
the banal approximation 7(t, d)=0. Hence, in order to obtain a useful
expression for r(t, d), it is necessary to utilize the exact result (2.16).
We obtain

r(t, d)=[E.(20 +0d) —2E (0t +0d) + E.(6d)]/24(t)
and it then follows by (2.18) that
(4.8) | (¢, d) | S K(8)e2eim*cvmme |

where K(t) is a constant not depending upon d. Thus the correlation
r(t,d)—0 at an exponential rate as the distance d increases between the
two intervals.
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