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Introduction

Stein [5] proved the minimax property of the maximum likelihood
estimator for univariate normal multiple regression. The present paper
is essentially an extension of this result to the case of multivariate
normal multiple regression. There is some consideration of the predic-
tion problem associated with regression, and an interesting modification
of the usual prediction procedure is discussed.

1. Preliminaries and notation

Let Z,, -+, Zy be independent random vectors, each distributed ac-
cording to Jl(g, X), 2 being nonsingular. Let

Y, 2y 2
() eein) (5, 3)
* X,, # Ux Exyzx

where Y, and p, are ¢x1, X, and gy are pX1, 3y is gXgq, ¢ is pXp,
Jyx I8 gXp, and Fyy=3%y. The conditional distribution of Y, given
X.=2 is Jl(a+p'z,2y.x), where Xy =3, —3; ;3% 3y, p=2%'2xy, and
a=py—pf'puy. We consider the problem of estimating the pair (a, §)
when the loss function is

1Y) L@ B g 3)=[@—a)+(B— ) ux) 27 xl@— )+ (B— ) 1z

+tr 28— H)Z7 (BB -
This loss function has the following interpretation. Suppose that we
have a new independent observation X, and wish to predict the corres-
ponding Y, when the loss function is l(l?o; Y., 2‘)=(Y’.,—Y.,)’E;§x(_ff.,—Yo).
By a computation similar to formula (2.9) of [5] (details are in [4]) one
demonstrates

Fact 1. Suppose the prediction function lA’., has the form 17'.,=&+
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,§’Xo~ where a and ,§ are functions of Z,,:---, Zy. Then
E,s((¥s Yo, )2y, - -+, Zu)=L(&, B; 1, D) +q.
Let

Y=SYV/N, X=3X/N, S=3@-DE-TYVN,
Sr=3 N~ XNV-TYIN, Si=3 (Xo— XWX XVN

and Syxzsfry .

We assume N =p+1. The maximum likelihood estimators for 8, a, X
and Jy,.r are, respectively, B=S3z'Syy, a=Y —-B'X, S=<SY S”) and

XY p.¢
Sy.x=8r—SyxS7'Szy. A sufficient statistic is T=(a, B, Sy.x, X, Sx).

In the sequel we employ some invariance notions. We consider
groups G=(G,, Gy, Gy), where g, in G, operates on the sample space, g
in G, operates on the parameter space, and g, in G; operates on the
space of estimates. Hence g in G has the form g=(g,, 9;, g5). Since G,
and G; will be taken to be groups induced by G, we shall in the sequel
describe groups G by giving a typical element of G,. If G is a group
of transformations and 9 a given class of estimators, we denote by
DG, D) the class of estimators in & that are invariant under G.

2. Minimax property of the maximum likelihood estimator

The risk R,(a, B; u, 2)=E, ;[Ly(a, B; p, 2)] can be computed as follows.
Let

Lyp; ) =tr S(B—p)Z7'2(B—p) and Ryf; p, 2)=E, s (LB D]
Straightforward computation (given in [4]) gives

Fact 2. If
(2.1) B=p(S) and a=Y-pXx,
then Ry(a, B; 11, 2)=(1+1/N)RyB; p, Z)+4q/N.

The maximum likelihood estimator (a, B) satisfies (2.1); hence

@.2) Ri(a, B; p, 5)= (1+llv)R,(B; mI+L.

The problem is invariant under the group described by the transforma-
tions
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()T ™):

where K(gxq) and M(pXp) are nonsingular, H is pXgq, u is ¢X1, and
v is px1. The estimator B is invariant with respect to this group.
Since the group operates transitively on the spaces of Xy.r and Xy and
the risk of an invariant estimator is constant on orbits, we can assume
in the computation that Yy.y=I, and ¥y=1I, Letting E, denote the
expectation at such parameter values, we have

(2.3)  Ry(B; p, 2)=Eitr (B—p)(B—H)'] =jé=l E[(b;—8,)(b;— 8]

where 8=, -, 8;) and B=(b, -+, b,). b, is the maximum likelihood
estimator of B, Again by invariance,

E(b;— B, (b;—B)=E,, s[(b;— B Zx(b;— B)/(Zx.x) ;1] »

where (Zy.z);; is the (4, 7)-th element of Zy.r. This expectation is the
risk of b,, which from [5] is seen to be p/(N—p—2) if N=p+3 and oo
otherwise. Thus

S [ if N=p+3
(2.49) R(B; p, 5)={ N—p—2

oo if N<p+2.
Using (2.2), we have

Ne+1)=2 ¢ N>p+3
(2.5) R(a, B; p, 3)={ NNN-p—-2)

oo if N<p+2.

Now, using Kiefer’s general invariance theorem (Section 3 of [3])
and the Hunt-Stein method, we shall eventually prove the

THEOREM. The pair (a, B) is minimax for the problem of estimat-
ing (a, B) when the loss is given by (1.1).

The proof is similar to the one given for the univariate case in [5].

We have seen (2.5) that (a, B) has constant risk. Hence it suffices
to prove that (a, B) is minimax over a subset of the parameter space.
Choosing this subset so that 3y;=1I,, 3y.x=I, and p,=0, the loss funec-
tion (1.1) becomes

(2.6) (@—a)(@—a)+tr (B—p)(F—p) .

Let I'=(a, B'); then (2.6) is tr (IA’—I‘)’(IA“—['), which is a strictly convex
loss function. Hence
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Fact 3. The class 97 of nonrandomized estimators based on the
sufficient statistic T is complete.

Because of Fact 3, it suffices to show that (a, B) is minimax in 9.

LEMMA 1. The only estimator in DT that is invariant under the
group G* described by

(2)_,( KYE+)I£Xk+u > ,

where K is either I, or —1I,, is (a, B).

PrOOF OF LEMMA 1. (Omitted; formally the same as the proof for
the univariate case in [5]. Details are in [4].)

By relating Theorem 8.6.1-4 of [2] to the problem of nonrandomiz-
ed estimation in the natural way one obtains

Fact 4. Let G be a finite group of M elements which leaves in-
variant the problem of estimating a parameter w. Suppose that the
loss function is convex and the transformations g, are linear in the
sense that

(2.7 ga(a’rl'a)z):ga(al)‘l'ga(a’z) .
Then given any estimator ¥, the nonrandomized estimator
(2.8) U*(x)= 29 ¥ ()| M

is invariant under G, and sup R(¥*; w)<sup R(¥; w).

REMARK. Without condition (2.7), one could not always obtain a
nonrandomized estimator ¥* that is invariant and statisfies (2.8).

Let G be the group described by

()= ().

Let G* be the two-element group {g-, g*}, where g~ is described by
(-()
o (Xk X,
and g* is the identity transformation. Then G*=G® .GV = {g® o g® ; g®
in G®, 1=1,2}. Now we can obtain

LEMMA 2. (a, B) is minimaz in D (G®, D).
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PrROOF OF LEMMA 2. Under G, a—a+u, B—»B+H, and X, Sy,
and Sy.r are invariant; or, letting U=(a, B), V=(X, S, Sy.x) and F
=(u,H'), U U+F and V—V. We identify G and the group it in-
duces on the space of U and V. Any g in G operates trivially on the
space of V: we write merely g(U) instead of g(U, V); furthermore we
identify F and g and write g(U)=U+g instead of U+ F. The quotient
group G*/G consists of the two cosets C_={g: g({U)=—U++g}, C,=
{9: g(u)=+U+g}. G® is a normal subgroup of G*, and G*/G® is iso-
morphic to G®, the isomorphism being C, < g*, C_ - g~. Take G in
Fact 4 to be G®. Given any estimator ¥ in 9,(G®, 97), the estima-
tor ¥'* obtained by averaging over the two-element group G® satisfies
sup RU*; p, Z‘)gs”uxp RW;p,%). Since ¥ is invariant under G, so is

¥*, By construction, ¥* is invariant under G®. Hence ¥* is invariant
under G*=G® -G®. Thus any estimator that is minimax in 9,(G*, 97)
must be minimax in 9,(G*, 97). But by Lemma 1, (a, B) is the only
estimator in 9,(G*, 9*). Therefore (a, B) is minimax in 9,(G®, D).

Kiefer’s theorem involves five assumptions which will be shown to
hold for the group G.

LEmMA 3. (Kiefer’s theorem). Suppose that a group G leaves the
problem imvariant, that the five assumptions are satisfied, and that ¥*
s mintmax in DG, D). Then T* is minimax in 9.

PrOOF oF THEOREM. We shall show that the five assumptions are
satisfied for the problem at hand when G=G’. Then the Theorem follows
at once by taking 9 of Lemma 3 to be 9* and applying Fact 3 and
Lemma 2.

To see that Assumption 1 is fullfilled, take gy (U:)=U,+ U, where
U, and U, are arbitrary values of U=(a, B’). Then gz(U;)=U,—U..
G operates transitively on the space of U values: any two values are
in the same orbit. Hence Assumption 1 becomes g7 }(U)=gz)(U,) for
any U, U,. But for any U we have g;'(U)=U—U=0, so this condi-
tion is met. Also, the estimator ¥(g, g7'U)=¥%(g+0)=¥(g) is in 97, as
required.

Assumption 2 is satisfied because, letting I'=(a, §), g,:f,,(hf):hsf
—hU=(L+h)—(U+h)=—U=gz(), for all h in G.

Assumption 3 is met because, by Lemma 2, (a, B) is minimax in
DAG®, DT).

Since ¢ in G maps (U, V) into (U+F,V), where F=(a, B') is a
gX(p+1) matrix, G is isomorphic to the additive group of a real
linear space of dimension ¢(p+1). The loss function is for each fixed
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estimate (a, ﬁ) bounded on bounded sets in (a, B)-space and becomes in-
finite as the components of (a, 8) go to infinity. Therefore Condition
4b of [3] for Assumption 4 holds.

In verifying Assumption 5, we again use the isomorphism with the
additive group of a real linear space. Because of this, we can take g
of Assumption 5 to be Lebesgue measure and G, to be the hypercube
of side 2n, centered at the origin, as in Condition 5b(1) of [3].

3. Extension

Consider the class of prediction functions of the form Yo a+ﬂ’Xo
where a=a(Z,,:--, Zy) and ﬂ—ﬁ(Z,, «++,Zy). For such prediction funec-
tions we have Fact 1. Hence the risk of ¥, for predicting Y, is ¢ more

than Ry(a, ﬁ; #, %), and the problem of predicting Y, reduces to one of
estimating («, 8). Hence the prediction function a+B'X, is minimax
among prediction functions of the above form.

4. An example

Now let ¥,=a+B'X,=Y +B'(X,—X). Intuitively it seems that we
might do better by replacing X by the updated mean

X*

-X).

Since

X,—X*=X,— X—W——( X—X)= 7 (%= —X),

the resulting prediction function Yo is

L _ _ N _
= B(X,—X*)= —— _B(X,—X).
Y =Y +B'(X,—X¥*) Y+N+1 (X—X)

Combining Facts 1 and 2, one obtains

Fact 5. If ¥,=Y+p(X,—X), where B=p(S), then E, ;[i(¥y; Y, )]
=(1+1/N)[R«(B; p, Z)+q).

Thus, such a prediction function can be assessed in terms of the

performance of E In particular, comparison of ¥, and ¥, reduces to
comparison of B and (N/(N+1))B. It is easy to see that the risk of
any estimator kB, where k is a constant and l=1—F, is

(4.1) RykB; pt, Z)=IRyB; p, Z)+1 tr Z:5557'15' .
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Using (4.1) and (2.4), we see that Ry(kB; p, 3)< Ry(B; g, 2) if and only if

_ 2—-1 qp
4.2 tr 3 T f <2t :
“2) A Ry v

When [=1/(N+1), this is

4.3 tr 28578 <@N+1)—2 |
4.3) r Y2y <(@N+ )N—-p——Z

Fact 6. Over the portion of the parameter space described by (4.3),
the estimator [N/(N +1)]B has lower risk than B.

REMARK. In the univariate case (¢g=1), letting R* be the multiple

correlation between Y and the X’s, tr 3,837x8 =R}(1—R". In this
case (4.3) is equivalent to

4.4 R’ M_
(4.4) <N—2+2Np

For (p, N) such that N=p+3 (so that the risk of B is finite) the right
hand side of (4.4) is always at least 2/3. The inequality (4.2) can be
rewritten as

b1—RY)
4.5) T oy

where a and b are constants. This inequality suggests replacing the
constant ! by a function which with high probability satisfies (4.5).
Indeed, Stein [5] has shown that estimators of the form [1—I(RY)]B
where R is the sample multiple correlation and

I(RHY=b(1—R"/[a(1—R)+R?]

have everywhere lower risk than B for suitable constants a and b.
Baranchik [1] showed that if we take I(R*)=c¢(1—R?/R! the resulting
estimator has everywhere lower risk than B. Here ¢ can be any con-
stant between 0 and 2(p—2)/(N—p-+2). Note that c(1—R)/R* is in-
versely proportional to the F-statistic for testing the hypothesis g=0.
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