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Abstract

The problem of association between two attributes in a pXgq con-
tingency table can be looked upon as the problem of relationship between
two vector variables x and y. If there is only one true non-zero canon-
ical correlation between x and y, the association between the two attri-
butes is of rank 1 and in this case, one set of scores is adequate to
describe the association completely; these scores are nothing but the
coefficients in the canonical variates corresponding to the true non-zero
canonical correlation. Given a set of hypothetical scores a;, a;,:: ¢, a,
for the rows, one is interested in testing their goodness of fit. Tests
for this are suggested in this paper. For obtaining these tests, a pre-
liminary result about direction and collinearity factors in discriminant
analysis, when S irrelevant variables are eliminated, is needed. This is
derived in part one of this paper.

1. Relationship between two vectors

The problem of association between two vectors x(px1) and y(gx1)
arises in regression analysis, multivariate analysis of variance, discrimi-
nant analysis and in contingency table analysis. This relationship has
different interpretations and implications in these fields, but in each case
it can be expressed in terms of canonical correlations and canonical vari-
ables. The canonical correlations 7, 75,-+-, 7, (p=¢) in a sample, are
the roots of the equation

_"'201.3 | C_-;y — 0

1.1
(1.1) . [=rC,
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and the canonical variables corresponding to 7 are U;x and mlyy (i=

1,2,---, p), where the column vectors l;,, m, satisfy the equation
2
1.2 [ _T(sz| ny ][ l(t) ]=0.
( ) Cy.: ] _’rzcw m,
Here
C..|C.
1.3 C=[Ln]Ca ]
(1.3) Co o

is the matrix of the corrected sum of squares (s.s.) and sum of products
(s.p.) of observations on x and y and is based on n degrees of freedom
(d.f.). The true or population canonical correlations are denoted by p;,
02, +, pp. If all the p’s are null, there is no association between x and
vy and under the assumption of normality, this is tested by using any
one of the following criteria:

(1.4) Wilks’s [9] 4 criterion; A=|A|/|A+B]|
or

(1.5) Pillai’s [7] criterion; t(A+B)"'B
where

(1.6) B=C,C;iC,,, A=C,,—C.C;iC,., A+B=C,,.

If only p,#0 but p,=---=p,=0, we say that the association between x
and y is of rank 1. In this case, the entire association can be adequately
described by the canonical variates corresponding to p,. In discriminant
analysis, this means that the means of ¢+1 groups to be discriminated
are collinear and a single discriminant function is adequate. Testing
the goodness of fit of a single discriminant function a’x=a,x,+ - - - +a,z,,
in this context, means that one wishes to test (1) whether a’x agrees
with the true canonical variate corresponding to p, and (2) whether one
linear function is adequate at all to describe completely the relationship
between x and y. (1) is called the ‘direction’ aspect and (2) is called
the collinearity aspect of the goodness of fit test. Bartlett [1] and
Williams [11] derived tests for this purpose by factorizing Wilks’ A as

1.7 A=A, Az 45 .
where (see Kshirsagar [4])
(1.8) Ai=a'Aala(A+ B)a

A=1— a'B(A+ B)'Ba/a'Ba

(1.9) a'Aala’'(A+B)a
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(1 .10) Ag = A/AlAz

A, is the direction factor and A, is the ‘partial’ collinearity factor.
Bartlett has given an alternative factorization also viz,

(1.11) A=MA 45,

where

1.12) A,:A{1+M}
a'Ba

(1.13) A5=A/A1A4

A, is the collinearity factor and /; is the ‘partial’ direction factor. A
statistic ¢ is said to have a A(n, p, ) distribution, if it is distributed as

ﬁ U, where U/’s are independent and U, has the distribution
i=1

(1.14) Const. UMa~+-b/(1 —U,)a-»1dU,

Bartlett [1] has shown that, in this case,

1
(1.15) — {n—_z—(p+q+1)} log, ¢

has a y* distribution with pg d.f. in large samples. If the null-hypothesis
of goodness of fit of &'x is true, he shows that 4, is a An—1,1, p-—-1)
and 4, is an independent A(n—2, ¢—1, p—1). Alternatively 4, is An—1,
g—1, p—1) and 4; is an independent A(n—gq, 1, p—1). Briefly, 4, is based
on p—1 d.f., 45 on (p—1)(¢—1) d.f., 4, on (p—1)(g—1) d.f. and 4; on
(p—1) d.f.

The author [5] has shown, that the other criterion ¢,B(A+B)™" can
also be partitioned, analogous to this factorization of A4, as

(1.16) nt,B(A+B)'=p+ntr
where
1l _ aBa 1__ &’B(A+B)'Ba ——1-7’
2 @(A+Ba @ n' a'Ba L
(1.17)

lTa=trB(A+B)—1——1'Tx——1—Tz .
n n n

Here 7, is the ‘direction’ part and 7, is the ¢ collinearity ’ part and under
the null hypothesis of goodness of fit of a'x, they are distributed in-
dependently as y* with p—1 d.f. and ¥* with (p—1)(¢g—1) d.f. respec-
tively, in large samples.
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2. Elimination of irrelevant variables

In some situations, it so happens that one is interested in studying
the relationship between—not x and y—but between residual variates
z and w, where the latter are obtained from x and y by eliminating the
first S sample canonical variables. These first S sample canonical vari-
ables are known apriori to be irrelevant and are therefore to be excluded.
Let L,x and My, where

(2-1) As'I>l<lp= [lu) | l(z) | . I l(S)]’
and
(2.2) g{}l:[mm | me, | .. | m(.s')]'

be the first S canonical variables. On account of (1.2), we find
(2.8) C..LiIR=C,,M{

where R is the Sx S diagonal matrix of 7 (i=1,2,---, S). One can also
show from (1.2) that

(2.4) BL{=(A+B)LR
and
(2.5) AL;=(A+B)L/(I-R).

Let L, be a (p—S)Xp matrix and M; a (g—S)Xq matrix such that
(2.6) L,C.,.L;=0, MC, M!=0

i.e., Lyx and L;x are uncorrelated and so also are My and My. From
(2.4), (2.5), (2.6) it can be seen easily that

2.7 L,B/=0, L,AL;=0.
We can now take
(2.8) z=Lyx, w=My

as our residual variables, after eliminating L,x and My. We now want
to test the goodness of fit of an assigned function a’x for the relation-
ship between z and w. It is obvious that this assigned function must
be so chosen that it is uncorrelated with the eliminated variables L.x;
in other words, it must be a linear function, say k’z of z alone. If so,
k will satisfy

(2.9) a=Lik.
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We define C,,, C,,,, C,, in the same way as in (1.3) and then A4,, B, and
A,+B, as in (1.6). We can, then easily write down the new direction
and collinearity factors 4,,, 4, 4., 45, or 1y, 715 etc. by using Kz in-
stead of a'x and A,, B, for A and B in (1.9), (1.10), (1.12), (1.13) and
(1.17). We must also replace n by n—S, p by p—S and ¢ by ¢—S as
S variables have been eliminated from x and from y. We, however,
wish to express these test statistics in terms of our old matrices A, B
and the assigned vector @. This can be done as below:
From (2.3) and (2.6),

(2.10) L,C,,M!=0.
Hence

(2' 11) Bz = Cszt;t}sz: = LZC:wCuT:J ‘IDIL;
= L 2[szC;(_ﬂlcyx - CWM;/(MnyM;,) —lM-lex] L;
=L,BL;, on account of (2.10).

Also
(2.12) Ag+Bz=Cz:=L2CIJ:L;
=LA+ B)L;.
Let
—[Lu]®
(2.13) L= [ A ],,_s
P

Then
(2.14) (A+B)'=L(LC,.L")'L

=L'[L1%’L{IIL2(§L 4]_lL on account of (2.6)

=3 L(LC.L) L.

=1

Hence

(2.15) k'B,(A,+B,)"'B,k=K L,BLj(L,C,.L})L,BL}k
=a'B{(A+B)™'— L{(L,C,,L!)'L,} Ba
=a’'B(A+B)'Ba

on account of (2.7). In exactly the same way, it can be shown that
(2.16) K'B,A;'Bk=a'BA™'Ba .
Note also that
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2.17) A= |4] = |LAL | = | LLAL| | L AL |
|A+B| |L(A+B)L'| |L(A+B)L{|| L{A+B)L;|
g LA
T[( MaTEBT | A,+ B, |
=/1,Tl'(1—r§),
1
on account of (2.4) and (2.5). Also
(2.18) k' B.k=K L,BLk=a’'Ba
and
(2.19) KAk=KL,ALk=a'Aa .

Substituting (2.15), (2.16), (2.17), (2.18) and (2.19) in Ay, Ay, i, As,
7: and 7, we find that these ‘new’ direction and collinearity factors
or parts are exactly the same as the old ones vis. 4;, 4, 4, 4, 72, 13

S
for x and y, except that 4 must be changed to 4 / TmT@Q—7), nto n—S,

p to p—S and ¢q to ¢—S.
We are now in a position to apply these results to the analysis of
a contingency table, which we do in Section 3 of this paper.

3. Association between two attributes

Consider a pXgq contingency table with the rows corresponding to
p categories a,, as,- - -, @, of an attribute ‘a’ and columns to q categories
b,, by, -+, b, of another attribute ‘b’. Let n, (¢=1,---,p, j=1,---,9)
be the frequency in the (i,)th cell. Let =, (¢=1,--:,p) be the row
totals and n., (j=1,---,q) be the column totals. Let n=§‘, n‘.=; Ny

be the total frequency. We define
(3’1) N=[nt.l] (i__—lv"'rp’ j=11"'yQ)

n;.

.
(3.2) D= -

Ny

and
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.
n.y

N.y
3.3) D,= :

L

The problem of assigning optimum scores to the rows and columns has
received considerable attention in the literature (Yates [13], Fisher [2],
[3], Maung [6], Bartlett [1], Williams [10]). It has been shown that the
vectors of optimum scores & and 3 corresponding to the a’s and b’s are
obtainable from the equations

=222 e

If we, therefore, consider two vector variables x(px 1) and y(gx1), with
the variance-covariance matrix,

(3.5) [_1%

5
D,
it is evident from (3.4) that &x and %'y are nothing but the canonical
variates corresponding to the canonical correlation 7. In other words,
the association between two sets of categories in a contingency table can
also be looked upon as a problem of relationship between two vector
variables. In general, one set of scores will not be adequate to describe
the association between ‘a’ and ‘b’ completely. We shall need as many
sets of scores, as there are significant canonical correlations between x
and y. If, however, only one canonical correlation is significant, one
set of scores will be adequate. We say, in this case, that the associa-
tion is ‘linear’ or of rank 1.

In the notation of Section 1, C,,=D,, C,=N and C,,=D, and
hence

(3.6) B=ND;'N'=| 51 MM | (i, h=1,--, p)
=t Mn-J
3.7 A=D,—ND;'N'

We shall denote by A4,, B, and D}, the matrices obtained from A, B
and D, respectively, by deleting the last row and the last column. It
is readily observed from (1.1) that 7*=1 is a canonical correlation be-
tween x and y, the corresponding canonical variates being z,+---+z,
and y,+---+y,. Obviously, these are irrelevant to our present problem
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of assigning scores to the a’s and b’s. We must therefore eliminate
these variables and study the residual variates z and w as in Section 2.

By taking regression on Zp} z, and é y,;, we can take the new variables
1 1
to be

(3.9) z,=xi—%(xl+---+x,); i=1,2,---,p—1
and
(3.10) w,=y,—%(y1+ ceety)s §=1,2,---,q-1.

We can easily calculate C,,, G..,, Cu. and hence A,, B, from these. They
turn out to be

(3.11) A=A, B,=Bo—-};dods,
where,
n,.
(3.12) d=| ™ |, d=[ﬂ].
: 'n,,,.
Nyp-1.
Note that
(3.13) |A,+B,|= D‘:—%dod{, R

Consider now the problem of testing the goodness of fit of a set of
hypothetical scores a;, a,- -, a, for the rows. The null hypothesis here
comprises of two aspects (i) the association between a’s and b’s is linear
and (ii) the true scores corresponding to this linear association are a;,
@, ++,a,. (i) is the collinearity part and (ii) is the direction part of
the null hypothesis. ‘

. . 3 p . .
Since we have eliminated 3 z;, the assigned function a'x, where
1

a'=[a;," -+, a,), must—as we noticed in Section 2—be uncorrelated with
S, i.e.
(3.14) da=0.

On account of this, a’x can be written, in terms of the residual vari-
ables z as k'z, where

(3.15) F=la,—a,, cs—ay,-++, ay1—a,] .
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We cannot obtain the ‘direction’ and °collinearity’ factors straightway
from Section 2, in this case, because they involve |A|, A™ and these
do not exist in the present case, as

(3.16) Ae=0.
where
(3.17) e=[1,1,---,1]1=[e}| 1]

1xp

and thus A is singular. We must, therefore find the direction and col-
linearity factors by directly working with A, and B,, especially for 4,
A, and 4;. A, does not involve A~! and can be written directly.
Partition A, B and a as
;L] , a:[_o_‘@_]P“l_
App a, 11

£ ]p-t a=| 4

By =
bl -t

tl

(3.18) B=[

From (3.16) and (3.18)

(3.19) Ae=t.
Let
fi
(3.20) Ba= =[ ; J:[ﬁ]
£ So
so that

» 4
fi=>2 > nijnhjah/n-j .

Then €f=€eBa=d'a=0 on account of (3.14). The equations

(3.21) Ag=f
in the p unknowns g'=[g,,-- -, 9,]=I[g{|9,] are soluble. A solution is
(3.22) g=Af

where A~ is a pseudo inverse of A (see Rao [8]). But (3.21) and (3.18)
yield

Azyo _gpt‘_‘: ﬂl
or
g— G A t=A'f,

or
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(3.23) g—ge=A:'f (on account of (3.19)).
Also observe that

Bik=(Bi- %d.,ds)(ao—a,,eo)

=Bayta,t="F, on account of (3.20).

Hence
(3.24) k'B,A;'B.k=f{A;'f,
=fo'(yo—’gpeo) ’ from (3.23)
=f'g
=f'A"f
=a'BA Ba .

Hence 4,, and 4;, are the same as 4, and 4;, even if A™! does not exist,
provided we use A~ for A™'. Hence the direction and collinearity fac-
tors are

Ay =Ay=1— @'B(A+B)'Ba/a'Ba

(3.25) ’Aa/a'(A+B)a
2 aif.
l—tgﬂat/g n;.ai
But
(8.26) Ay =4, [ A1,
=I Ar |/|A1+B I AIIAZI
n|A,|
(nl Ny, np)(l E—ff/E a(fi)
ﬁ}ftgt

(3.27) A= PlAl )45

(nl e np) éfiai
and

En‘ai Eaift
Zntaz Zfiai D neai—> fia+2 fi9:

Ay, is A(m—2,1, p—2). Ay is A(n—38, ¢—2, p—2), 4, is A(n—2,¢—2, p—2)

AS:
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and 4, is A(n—q,1, p—2). Under the null hypothesis, therefore, from
(1.15)

—{(n—2)—-%—(1+p—2+1)} log, 4,  is y* with p—2 d.f.
and
—{(n-—3)—-§(q—2+p—2+1)} log, 4,  is f* with (p—2)(g—2) d.f.

They pertain to the direction and collinearity aspects respectively of the
goodness of fit test. We can write down similar results for 4, and 4
of the alternative factorization.

The validity of such tests based on the assumption of normality of
x, for application to discrete data of contingency tables is questionable.
Williams [10] justifies this by an appeal to asymptotic normality and
also by the result that elementary symmetric functions of 7 have the
same expected values in contingency tables, as for normally distributed
x. The above tests therefore are approximate but, as pointed out by
Williams [10], adequate for practical purposes, especially when 7 is large.

In the above analysis, we have used Wilks’ 4 as the over-all cri-
terion for testing the association between the two attributes ‘a’ and
‘b’. However, the usual practice, while dealing with contingency tables,
is to use the y* test viz., if there is no association

(3.28) r=n(3 S}nt/n.n.)-1)

has a y distribution with (p—1)(¢g—1) d.f. But (3.28) is nothing but
(8.29) nt,B(A,+B,)™

or Pillai’s criterion. This can be written, more simply as

(3.30) n[t,B(A+B)™"-1].

The quantity subtracted in the larger bracket of (3.30) is the eliminated

root r*=1, corresponding to zp‘, 2.
1

The ¢direction’ and ‘collinearity ’ parts, 7, and 7, of this over-all
1t of (3.29) are easily seen, from (1.16), (1.17) and (3.30), to be

v 1
>S—fi

3.31) rumn| e _ Z“N;g . df. -2
gaif( 2 teai

and
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(3.32) == gt (p—2)(q—2).

> ai.fi

Under the null hypothesis, they have y* distributions, for large n.

Williams [10] has given the test of goodness of fit of a set of hypo-

thetical scores, only for the particular cases ¢g=2,3. We have here the
tests for any p and q. Further, we have also given the tests, based
on the alternative criterion (Pillai), which in this case is the usual 3* of
a contingency table and is thus more in tune with the classical method

of partitioning an over-all 4%, corresponding to suspected sources of as-
sociation.
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