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For experiments involving m factors (4,,---, A,), each at 2 levels
(1, 2), and replicated in n(=2) blocks, a class of nonparametric procedures
for estimating and testing the various main effects and interactions are
considered. The procedures are based on a simple alignment process and
involve the use of some well known rank statistics. Their performance
characteristics are compared with those of the standard (normal-theory)
parametric procedures. Extensions to confounded or partially confounded
designs are also considered.

1. Introduction

Let j=(j,, -+, ja) Tepresent the combination of the levels ji,---, jn
of the m factors, where j,=1,2, for k=1,---,m(=2). We denote by
J the set of all possible (i.e., 2™) realizations of j. The response X;; of
the plot in the ith block receiving the treatment j is expressed as

(LD Xy=p+—[S(—Drcl+ey,  jeJ, andi=l-om,

where B,,---, 8, represent the block effects, ¢;,’s are the error variables,
(1.2) r=(r,---,r,)  where 7, is either 0 or 1, j=1,---,m,

the summation S extends over all possible 2™ values of r, and the treat-
ment effects {r,} are defined as follows. We let 7,=0, and

(1.3) Ty =T4l1alm for r+#0, where A}=0, j=1,--., m.
Thus, 7,,=7u,0,...01"**s Ta,, =Ta,....0,»n Yepresent the main effects of the m
factors, 4 4, =7 10,0s* " *» Ta,_ 4, =Ta,-01,» Tepresent the 2-factor (or

first order) interactions, and so on; 7, is a k-factor interaction if rl,=k,

* Work supported by the Army Research Office, Durham, Grant DA-ARO-D-31-124-G-
746, and presented at the 37th session of the International Statistical Institute, held at
London, U.K., during September 3-11, 1969.
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1<k<m, where I,=(1,---,1). We denote by
(1.4) R={r=(ry,--+,1,): r#0}.

In the normal theory model (cf. Cochran and Cox ([2], Chapter 5) and
Kempthorne ([3], Chapter 13)), the usual assumptions are the additivity of
the block and treatment effects, and independence, homoscedasticity and
normality of the errors. In the nonparametric model, we relax these as-
sumptions considerably. First, we assume that the 2™ random variables
[eis, J € J] have jointly a continuous cumulative distribution function (cdf)
G, which is symmetric in its 2™ arguments, for +=1,---,n, but G- --,
G, may otherwise be quite different from each other. If the errors
within the same block are independent and identically distributed, then
of course, their joint edf is symmetric in the 2™ arguments, but the
converse is not true. In fact, in many “ mixed model ” experiments, the
symmetry of the joint distribution can be justified in the absense of the
block vs treatment interactions, but the same can not be made of the
independence (cf. Koch and Sen [4]). Thus, the normality of the distri-
bution of the errors is disposed with, while the independence and homo-
scedasticity of all the n2™ errors are replaced by the independence of
the n sets of 2™ within block errors and the interchangeability of the
errors within each block. Further, as G,,---,G, may be arbitrarily
different, the condition of homoscedasticity is not imposed on errors be-
longing to different blocks. Second, we need not even assume that the
block effects are non-stochastic or additive in nature. By virtue of the
first assumption, we may absorb the g, in the cdf G,, and write (1.1)
equivalently as

(1.5) P[X;;—Zs(—1)"r,=w;, jeJ1=Gw;, jeJ), i=1,---,n,

where Gy(z,,: -+, &) is symmetric in its 2™ arguments. Thus, excepting
the additivity of the treatment effects, all the other assumptions will
be relaxed here.

Let now P be a subset of R. Then, our first problem is to test
the null hypothesis

(1.6) H,p: 7,=0, for all re P (CR).

For later convenience, we shall say that P is a monoatomic, diatomic
or multiatomic set according as it contains a single, two or more than
two elements. Thus, if we want to test for any single z,, P will be
monoatomic, and if we are interested in more than one z,, P may be
diatomic or multiatomic. Our second problem is to provide robust (point
as well as interval) estimates of z,, re¢ R. Finally, we like to extend
these results to the situations where not all the treatment combinations
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are applied in all the blocks, i.e., we are given some confounded or par-
tially confounded design.

2. Fundamental properties of the aligned observations

Since the model (1.1) involves the block effects as nuisance parameters
(or spurious random variables), by means of the following intra-block
transformations, we obtain the aligned observations. These aligned ob-
servations provide both the least squares and the proposed estimates of
z,. Let

(2.1) t; ,=2"""03, (-1 X, reR, and 1=1,---,n,

where the summation J extends over all jeJ. The proposed nonparam-
etric procedures are based on the aligned observations, defined by (2.1).
Incidentally, the parametric procedures are also based on these aligned
observations ((cf. Cochran and Cox ([2], Chapter 5)). The following lem-
mas relate to some fundamental properties of these aligned observations
and are used in the later sections.

LEMMA 2.1. If G, in (1.5) is symmetric in its 2™ arguments, then
for each r (€ R) the (marginal) distribution of t; . is symmetric about z,.

ProOF. Let us write
2.2) gi,=2"""13,(—1)"e,, reR, and i=1,---,n.
Then, it follows that
(2.3) tir=7+09ir for all re R, and 72=1,---,n.

Thus, it suffices to show that the marginal distribution of each g;, is
symmetric about 0. Now for any reR, let J be decomposed into 2
disjoint subsets

(2.4) JP={r: jr=o0dd}, and JP={r: jr'=even}.

Then, we can easily show that J and J® both contain 2™! elements,
and hence,

(2.5) 0ir=2sP 0= EsPey=U—US2,

where U is a linear function of [e;;, j € J] with 2! of the coefficients
equal to 1 and the rest all 0, for k=1,2. Now, by the hypothesis of
the lemma, the cdf G, is symmetric in its 2™ arguments, and this im-

plies that the joint edf of (UY, U?) is also symmetric in its 2 argu-
ments, Hence, the distribution of U%—UY} is symmetric about 0. Q.E.D,
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Now, by definition, ¢;,, r€ R are mutually uncorrelated random
variables. But, these are not necessarily independent, unless we impose
the normality on G;. We shall next prove the uncorrelation of skew-
symmetric functions of these random variables. Let A(x) be a real valu-
ed skew-symmetric function of x, i.e.,

(2.6) h(x)+h(—2)=0, for all «,
and suppose that
2.7 Elh¥(g; )<, for all re R, and 1=1,---,n.

LEMMA 2.2. Under (1.5), (2.6) and (2.7), E[h(g;,)]=0 for all re R,
and

(2.8) E[h(g:;)(g:)]=0,  for all r#8€R.

PROOF. By virtue of Lemma 2.1, the distribution of g;, is sym-
metric about 0, and by (2.6), h(x) is skew-symmetric. Hence, it follows
readily that E[h(g;,]=0, where the existence of the expectation is in-
sured by (2.7). Now, we say that jr' (mod 2)=F, if jr=2l+Fk, k=0,1,
where | is any non-negative integer. To prove (2.8), we partition J into
4 disjoint subsets

(2.9) JED={j: jr' (mod 2)=Fk, js' (mod 2)=q}; k,q=0,1.

Since the coefficient vectors of g;, and g;, are mutually orthogonal and
each orthogonal to (1,---,1), it follows readily that each of these sub-
sets contains 2" elements (j). Let then

(2.10) U,-f",’,'”=2',<r';-a)e,, , k,q=0,1, i=1,-.--,m.
Then, we may write
9., =US + UG- USY—USY
(2.11)
00 =USP — UL+ USD—USD .
Now, by (1.5), the symmetry of the cdf G; implies that the joint dis-
tribution of [U%2, k,¢=0,1] is also symmetric in its four arguments.
Hence,
(2.12)  E[Mg: I(g:,)]=E[MZ\+ Zy— Zy— Z)Z,— Z,+ Zs— Z)]

where Z,, Z,, Z, and Z, are interchangeable random variables. Let Y=
[Y.(l)éY(g)éY(a)é).,(;)] be the Ordel‘ Statistics associated With (Zl,‘ Yy Z4).
Then, from the symmetric dependence of the Z,, it follows that the con-
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ditional distribution of Z,,--., Z,, given Y, is uniform over the 24 per-
mutations of the ordered variables among themselves. Thus,

(2.13)  E[h(g;)h(g;0) Y]
= 2—];12 Y p+Yap—Yap—Ya )h(Yap—Yap+Yup—Ya,) ,

where the summation 3* extends over all possible 24 permutations of
,+++,% over 1,-.., 4. Now, using (2.6), it can be easily verified that
the right-hand side of (2.13) is equal to 0, for all ¥. Hence, taking
expectation over Y, the lemma follows.

Remark. The alignment procedure considered here is a natural ex-
tension of the same in Sen [8]. Also, Lemma 2.2 generalizes Lemma 2.1
of Sen [10] to a more complicated situation.

Suppose now that X=(Xj,---, X,) be a stochastic vector following
a continuous cdf G(x), x € R?, the p-dimensional real space. We say that
the cdf G(x) is diagonally symmetric about 0, if both X and (—1)X
have the same distribution G(x) (for details, see Sen and Puri [12]). It
follows from (2.11) and the discussion following it that for any r+s,
(9i.r» 9:,) and (—g; ., —9i,) have the same (bivariate) distribution. Hence,
we have the following lemma.

LEMMA 2.3. Under the condition of Lemma 2.1, all the (’;f) bivari-
ate (marginal) distributions of (9;,, 9i.), r#8 (€ R) are diagonally sym-
metric about (0, 0).

It is to be noted that (1.5) or even the independence and identity
of the distributions of the errors within the same block is not sufficient
to guarantee the diagonal symmetry of the joint distribution of more
than two g;,. This, we show by means of the following simple counter
example. Suppose that m=2 and the errors in the same block are in-
dependent and identically distributed with a characteristic function $(8).
Consider the three variables

01=20; 1n="=€:11+€;10— €1 — €0

0:=20;,00=€;11— €410+ €01 —€yp0

0s=20:, 11 =€;11—€10— €1 +Cyp9 .
Then, the joint characteristic function of (g,, 9., ¢;) is

(2.14) P01, 0, 63)=$(0,+ 03+ 05)p(0, — 0, — O3)p(— 6, +6,— ;)
- ¢(—0,—0,+6,) .

The joint distribution of (g, g;, gs) will be diagonally symmetric about
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(0, 0, 0), iff ¢(,, 0,, 0)=¢(—6,, —8:, —8,), for all (4, 6,, 6,), and that, in
general, it is not true can easily be verified by considering the &(9),
corresponding to some skew distributions, such as the Gamma or the
exponential ones. It may be noted that the diagonal symmetry of any
set {t; ,, r € P(CR)} can be established if we strengthen the assumption
in (1.5) a little more as follows:

(2.15) the joint distribution of the errors [e;;, j€ J] is
not only symmetric in the 2™ arguments but also
is diagonally symmetric about 0.

(2.15) holds, in particular, when ¢;;, j€ J, are all distributed independ-
ently and identically according to a distribution which is symmetric
about 0. Of course, this is more restrictive than (1.5), but is less re-
strictive than the assumption of normality of the errors.

LEMMA 2.4. Under (1.5) and (2.15), the joint distribution of any
set {g;,, r € PCR} 1is diagonally symmetric about the origin.

ProOF. By the hypothesis in (2.15), both the sets [e;;, j€J] and
[—ei;, j€J] have a common distribution which is symmetric in its 2™
arguments. Now, if in (2.2), we replace the ¢;; by the corresponding
—e;;, j€J, we obtain —g;, for all re R. Hence, the joint distribution
of [—g:,, r€ R] is the same as that of [g;,, r € R]. Q.E.D.

LEMMA 2.5. Plg;,>0, g;,>0]=1/4, for all r+8 (€ R), and i=1,
see, M.

PrOOF. The proof follows from Lemma 2.2 by letting A(zx) to be 1,
0 or —1 according as z is >, = or <0, and noting that by virtue of
Lemma 2.1, the population median of g;, is equal to 0, for all re R.

3. Nonparametric tests for z,, r¢e PCR

In the normal theory model, the total corrected sum of squares is
partitioned into the various components due to each of the main effects,
interactions and errors. Then, the test for any hypothesis is based on
the variance-ratio (&-) criterion comparing the mean square due to the
hypothesis with the error mean square; the reader is referred to Cochran
and Cox ([2], Chapter 5) for details.

In the nonparametric model, we are faced with the following situa-
tion. If the subset P is monoatomic, exact (i.e., small sample) as well
as large sample tests for H,: 7,=0 can be constructed. If P is diatomic,
conditionally distribution-free tests can be constructed for small samples.
If P is multi-atomie, such conditionally distribution-free tests can be
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constructed only under the assumption (2.15). However, if P is diatomic
or multi-atomic, large sample tests can always be constructed under the
assumption (1.5). As such, we shall consider the cases separately.

3.1. Nonparametric tests for monoatomic P. The problem is to test
the null hypothesis H,: 7,=0, for some specified r (€ R). (Actually, we
may test for H,: r,=7 (known), by working with the variables t;,—z},
instead of the ¢;,.)

(1) The sign test. Under the null hypothesis, by (2.3) and Lemma 2.1,
t;r, i=1,---, n are all distributed independently and symmetrically about
0. Let n(r) be the number of positive observations among ¢, ., -, ts,r.
Then, we have

3.1) P[n(r)=k|H):r,=O]::<Z>2‘", for k=0,1,---,n.

Thus, we can use the simple binomial tables to construct a test based
on the observed n(r). For large values of #», we may use the asymp-
totic normality of the random variable Z,=2n""’[n(r)—n/2]. The test
is known to be consistent and unbiased for any z,#0. The asymptotic
relative efficiency (A.R.E.) of the test with respect to the standard
parametric test is equal to the A.R.E. of the sample median with re-
spect to the sample mean. Since, we are dealing with the situation
where the distributions can differ from block to block, the classical re-
sults are not directly applicable. However, we may use the results in
Sen ([9], Section 3) and claim the same robustness properties as are studied
there.

(2) The general scores test. Let us arrange (in ascending order of
magnitude) the observations |¢;,|,-++,|ts,|, and let R;, stand for the
rank of |t;,| in this set, i=1,--.,n. Also, let S;, be equal to 1 or 0
according as t;, is positive or not. Finally, let a.(?) be a single valued
function of ¢ (=1,---,n). Two notable forms of this function are as
follows: (a) the Wilcoxon scores, where a,(3)=1/(n+1),i=1,---,n, and
(b) the normal scores, where a,(i) is the expected value of the 4th small-
est observation in a sample of size n from a chi-distribution with 1 de-
gree of freedom (d.f.), i=1,..-,n. In general, we may work with suit-
able [a.(1), -, a,(n)] satisfying the regularity conditions of Chernoff and
Savage, which have been studied in detail in a previous paper (Puri and
Sen [6]). For simplicity of presentation, we shall consider only the cases
of the Wilcoxon and the normal scores and refer to Puri and Sen [6],
which may be used to extend the results to the case of the general
scores. We now define the statistic

3.2) Qr)=n"'27,a(R; ) [S;—1/2], reR.
Under H,: 7,=0, Q(r) has 2" equally likely realizations obtained by con-
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sidering the 2" equally likely realizations of (S,,,---,S,,), where each
S;, can assume the values 0 and 1 with equal probability 1/2. Hence
the distribution of Q(r) over the 2" equally likely realizations of (S, ,,
-+, Sy,,) does not depend on the parent distributions G;,---,G,. Thus
the test based on Q(r) is a distribution-free test. For the particular
case of the Wilcoxon scores, the usual critical values available in Owen
([5], pp. 325-329) (computed under the assumption that the ¢;, have all
a common distribution) can still be used in our case where the parent
distributions are not necessarily all identical. For large values of n, it
follows from the results of Sen ([7], [11]) that the large sample distri-
bution of W(r)=2n"Q(r)/A, (where A2=n"'37_,a2(¢)) has closely a stand-
ard normal distribution when the null hypothesis holds. The asymptotic
relative efficiency of the test based on the Wilcoxon scores with respect
to the standard parametric variance-ratio test is the same as that of
the Wilcoxon signed-rank test with respect to the Student t-test, and
as this has been studied in detail in Sen [7], we omit the discussion here.
For the normal scores test, it follows from the results of Sen [11] that
the A.R.E. is bounded below by 1 for all G,---,G,. This clearly ex-
plains the supremacy of the normal scores test over the standard param-
etric test.

3.2. Tests for diatomic P. Here we desire to test the null hypothesis
that r,=7,=0, for some r+s (€ R).

(1) The sign test (Chatterjee [1]). We define CL (C®) as the number
of (ti,, ti,), i=1,.--,m, for which both the coordinates are positive
(negative), and let DS (D®) be number of observations for which the
first (second) coordinate is positive and the other is negative. Then,
C.=Co+C® and D,,=n—C,,=D®Y+D?® are the number of concordant
and discordant observations. If both C,, and D,, are positive, we define

3.3) T,.=4[(C£:>—%c,.)2 /Cat(D2—1-Dn) /Da].

If C,, is 0 or m, one of the terms in (8.3) is absent. Under the null
hypothesis, it follows from the results of Chatterjee [1] that conditioned
on C,,, C{) has a binomial distribution with parameters (C,, 1/2), DY
has a binomial distribution with parameters (n—C,,, 1/2), and C¥ and
D;y are stochastically independent. Thus, the exact (conditional) null
distribution of T,, can be readily traced with the aid of simple bi-
nomial tables. For large =, it follows from the results of Chatterjee
[1] that the null distribution of 7}, can be approximated by a chi-squared
distribution with 2 d.f.; omitting details we say that by virtue of our
Lemma 2.5, the needed regularity conditions are all satisfied in our case.
The test is shown by Chatterjee to be unbiased and consistent for any
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(z,, 7)) #(0,0). Again, using our Lemma 2.5, and proceeding as in
Chatterjee [1], we may prove along the lines of Section 3 of Sen [9]
that the A.R.E. of this test with respect to the parametric variance
ratio test is the same as in the corresponding sign test for monoatomic P.
(2) The general scores tests. The discussions of the Wilcoxon and the
normal scores tests follow on the same line as in the multiatomic case
considered in Section 3.3.

3.3. Tests for multiatomic P. We want to test the null hypothesis that
7,=0 for all r ¢ P, where P contains 2 or more elements. Unless deal-
ing with the general scores tests for the diatomic case, we assume that
(2.15) holds for the parent distributions, so that the diagonal symmetry
is taken to be granted.

(1) The sign test. We define C,, as in Section 3.2, and let k,,=4C,—1.
Also, let n(r) be defined as in Section 3.1. Let now P contain k (=2)
elements r,, j=1,---, k. Define then n(r)=(n(ry),---, n(ry)), and let H
be a kxk matrix whose diagonal elements are all equal to 1 and the
off-diagonal elements are given by h,j,j, , j#5=1,---, k. By Lemma 2.5,
H is positive definite, in probability. In any case, we may work with
the generalized inverse of H, and denote it by H*. Then, the proposed
test statistic is

(3.4) Z(p)=%[n(r)—%nlk]lﬂ* [n(r)—%nlk] .

For k=2, (3.4) reduces to (8.3). We denote by S;,=(Si,, -, Sir), 1=
1,-.-,n, where the S;, are defined as in Section 3.1. Then, the conditional
distribution of Z_ over the 2" (conditionally) equally likely realizations
of (Si.,, **,Sn, (wWhere each S;, can only assume the values (—1)’'S;,,
=0, 1, with probability 1/2) generates the exact conditional distribution
of Zg. For large nm, it again follows from our Lemma 2.5 and some
standard manipulations that the null (conditional) distribution of Z can
be closely approximated by the chi-square distribution with k d.f. The
null hypothesis is rejected when Z is larger than its critical value at
a specified level of significance. By using Lemma 2.5, it follows that
H approaches the identity matrix of order k, in probability, as n— oo.
Thus, some standard manipulations show that the A.R.E. of this test
with respect to the parametric variance ratio test is the same as in the
monoatomic case.

(2) The general scores tests. We define a,(i) as in Section 3.1, and let
R, i=1,--+,n, be defined as in (2) of Section 3.1, for all j=1,---, k.
Define then

(B.5)  wry, rp)=1/n)3,an(R; e Ry ) (Sir, —1/2)(Sir, —1/2),
for all j,5/=1,---,k. Note that v,(r,, r)=01/4)A} for all j=1,---, k.
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while for j+#j’, the quantities depend on the sample rank matrix. We
denote by V, the kX k matrix whose elements are given by (3.5), and
we denote its generalized inverse by V,;*. Then the proposed test sta-
tistic is

(36) VV(P):_ nQ(r), Vn*Q(r) ’

where Q(r)=(Q(ry), -+, Q(r)) and the Q(r,) are defined as in (3.2). Two
special cases of (3.6) are the multivariate signed rank statistic and the
multivariate normal scores statistic for which Q(r;) are defined as in (2)
of Section 3.1. Such statistics are studied in details by Sen and Puri [6].
We note that though they considered the permutation distribution theory
of such rank statistics for the case of identical distributions, their theory
readily extends to non-identical cdfs, as the sign-invariance has nothing
to do with the identity of the parent cdfs. Let us denote the marginal
cdf of g;, by Fi(x), t=1,---,n, where we note that by definition the

cdf F, is the same for all re R. Let then F,=n"'37_,F,. Since, by
Lemma 2.1., F},---, F, are all symmetric about 0, so is F,. Thus, by
definition F(x)—1/2 is skew-symmetric about 0. Also, let F*(z,y) be

the bivariate cdf of g;,, g;, for any r#s8cR, i=1,---,n, and let F*=
n~'Y7_,F¥. Then, for the particular case of the Wilcoxon scores, it is
easy to verify that for any r;#r;, v,(r;, r;) converges in probability to

3. I [ro-L][Fe-L]iFey,
which is equal to 0, by our Lemma 2.2. Hence, it follows that the
matrix V, converges in probability to a diagonal matrix whose elements
are all given by 1/12. As such, it follows along the lines of Theorem
3.2 that the large sample permutation distribution of the Wilcoxon scores
statistic can be approximated by the chi-square distribution with % d.f.
Of course, as in (1), for small n, we can evaluate the exact conditional
distribution over the 2" conditionally equally likely realizations of S, ,,
+++,8,,. The AR.E. of the Wilcoxon test with respect to the param-
etric variance ratio test again coincides with the monoatomic case. For
the normal scores test, we let @(x) to be the cdf of the standard nor-

mal distribution. Then, let h(x)=®'[F,(x)]. Since F, has been shown to
be symmetric about 0, and @(z) is skew-symmetric about 0, it follows
that h(x) is also skew-symmetric about 0. Then, for the normal scores,
it can be shown that v,(r,, r;) converges, in probability, to

@8 | |7 mehwiFr@y, foral jri=1,-. k.

Again, by Lemma 2.2, (3.8) equals to 0, for all j#5. Consequently, it
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follows that in this case, the matrix V¥, converges, in probability, to a di-
agonal matrix all whose elements are equal to 1/4. As such, again using
Theorem 3.2 of Sen and Puri [6], it follows that the permutation distri-
bution of the normal scores statistic converges to a chi-square distribu-
tion with %k d.f. For small values of », we may again use the 2" con-
ditionally equally likely realizations of S, ,,---, S, , to evaluate the exact
conditional distribution of W. The A.R.E. of the normal scores test
with respect to the variance ratio test is bounded below by 1, uniformly
in Gy,---, G,.

3.4. Large sample tests for multiatomic P. The tests in Section 3.3 are
conditional in nature and require the assumption (2.15), which is more
restrictive than (1.5). We shall now show that for large values of =,
we can construct unconditional tests which are valid even under (1.5)
and are much simpler in nature. Here also, we want to test the null
hypothesis that z,=0, for all re P, where P contains k elements r;,
e Ty

(1) The sign test. We define the vector n(r) as in (1) of Section 3.3.
It follows by some standard arguments based on our Lemma 2.5 that
under the null hypothesis, n~*2[n(r)—nl./2] has asymptotically a multi-
normal distribution with null mean vector and dispersion matrix I, the
identity matrix of order k. Thus, under the null hypothesis the statistic

k 2
(3.9) z&g:% s [n(r,) —%]

has asymptotically a chi-square distribution with k¥ d.f. Thus, an un-
conditional test for the null hypothesis can be based on ZF), using the
tail of the chi-square distribution (with k d.f.) as its critical region.
This test has the A.R.E. as the other sign tests in Sections 3.1-3.3.
(2) The general scores tests. For the case of the Wilcoxon and the
normal scores tests, we have shown in Section 8.8 that the correspond-
ing permutation covariance matrix converges in probability to a diagonal
matrix as n—oo. It follows from the results of Sections 4 and 5 of
Sen and Puri [6] with extensions along the lines of Sen [7], [11] that
even when Gy,---,G, are not necessarily identical, the unconditional
covariance matrices of the Wilcoxon scores or the normal scores statistics
are diagonal, when the null hypothesis holds and the conditions of Lem-
ma 2.2 hold. Thus, it can be easily shown along the lines of Sen [11]
that the statistic

(8.10) mﬁ)=%f§; [Q(r)Y

has asymptotically a chi-square distribution with k¥ d.f. when the null
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hypothesis holds. The A.R.E. of this test with respect to the variance
ratio test is the same as that of the test based on Wip. Thus, for the
normal scores test, the A.R.E. is bounded below by 1, for all G,,-- -, G,.

4, Robust estimation of the main effects and interactions

The conventional estimate of the treatment effect 7z, is the sample
average of ¢;,, 1=1,---,m, for all re R. This estimate is known to be
sensitive to gross-errors and outlying observations. As in Puri and Sen
[6], we may desire to provide robust estimators of z, based on suitable
rank statistics. For this purpose, we use the rank statistics considered
in Section 3. Specifically, we consider the following three estimates.
(1) The median estimators. We denote the ordered observations among
tirst s tur DY tayese vy tar. Then, if n is odd (=2m,+1), the sample
median is &y +1,, While if » is even (=2n,), we define it as [t(u)r+tmy)rl/2,
for re R. Then, on using the sign statistics of Section 3.1, and pro-
ceeding as in Puri and Sen [6], we obtain the sample median of the ¢;,
as an estimate of z,, for all re R. The estimate is unbiased and consistent.
Moreover, it is very insensitive to fluctuations of the sample extreme
values and is robust for gross errors. The A.R.E. of this estimator with
respect to the conventional estimator is the same as that of the corre-
sponding tests considered in Section 3.1. Hence, referring to Section 3
of Sen [9], we omit the details here.

(2) The Wilcoxon scores estimators. We consider the Wilcoxon signed
rank statistics, considered in Section 3.1, and proceeding as in Puri and
Sen [6], we obtain the following estimator of z,:
4.1) r,=median {[¢; .+¢; ,1/2}, reR.

1sisi’'sn
The estimator is also unbiased and consistent. Further, like the median,
it is insensitive to the fluctuations of the extreme values and to gross
errors. Moreover, its A.R.E. with respect to the conventional estimator
can never be less than 869, while the same can be indefinitely large.
This suggests itself to be a very strong competitor of the conventional
estimator.
(8) The normal scores estimators. We define the normal scores sta-
tistics as in Section 3.1. If instead of the observations ¢; ,, 1=1,---, n, we
work with the observations ¢;,—b, 1=1,--., n (where b is any real quan-
tity), it can be shown (cf. Puri and Sen [6]) that there will be an half
open interval in b (say, b"<b<bd®) for which the statistic is equal to 0
(or there will be a value of b, say b,, such that for b less than b,, the
statistic assumes positive values, while for b=b,, it is negative). In
the first case, we define b,=(b"’+b®)/2. Then, our proposed estimator
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of 7, is b,. This estimator is also unbiased and consistent. Further, it is
robust for gross errors and insensitive to outliers. The A.R.E. of this
estimator with respect to the conventional estimator is bounded below
by 1, while it can also be indefinitely large. The only disadvantage of
this estimator is that we have to use a trial and error method for the
computation of b,. However, if we use (4.1) as a trial solution, usually
the iterative procedure converges quite rapidly. In fact, in Puri and
Sen [6], it is shown that this computation is not very serious specially
when 7 is not very large.

So far we have considered the problem of point estimation only.
We may also consider the problem of confidence regions for z,, based
on suitable rank statistics. As these follow on the same line as in Sec-
tion 4 of Puri and Sen [6], for brevity, the details are omitted.

5. Extensions to confounded or partially confounded designs

Suppose now that the 2™ experiment is conducted in blocks of size
2%, m'=m—p, p=1. Then, it is well known that within each replicate
21 of the treatment effects are confounded with the block effects and
these are not estimable. Thus, from the 7 replicates, we obtain n2? of
the intra-replicate ¢;, confounded with the block effects. This situation
poses no serious problem to our procedure. Suppose that we are able
to obtain the unconfounded t;, (for a fixed r) only from n; (<n) re-
plicates. Then, we can apply all the results in Section 3.1 and Section
4 with the simple change that » be replaced by n;. To apply the re-
sults of Sections 3.2 and 3.3 we require that for all r € P, the observa-
tions t;,, r € P, are unconfounded in an equal number of blocks. This
can be justified in the case of balanced partially confounded designs.
Finally, the results of Section 3.4 can also be extended to the confounded
case, by replacing n in (8.9) or (8.10) by n, and shifting it within the
summation.
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