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This note is concerned with random samples of the form N,, X,
-++, Xy, defined on some probabilitiy space (£, A, P), where N, is a
Poisson random variable with mean 1 and the X, have some continuous
distribution function F. Following M. Kac [8] we define the modified
empirical distribution function

N,
(1) Fr@)=1" BE(X), —co<y<+oo,

where ¥(x) is 0 or 1 according as x>y or <y and the sum is taken
to be zero if N,=0. Analogous one and two sided Kac statistics of the
original one and two sided Kolmogorov statistics are

Lub. _wcycie [F(y)—F*(y)] and Lub.wcycte | F(y)—FX)|

respectively. The exact and limiting distribution of the first one of
these random variables was studied by J. L. Allen and J. A. Beekman
[1], and they also studied the exact distribution of the two sided Kac
statistic [2] whose asymptotic distribution was found by M. Kac [8]. As
long as F is continuous, the distribution of the Kac statistics is inde-
pendent of F and we can therefore confine our attention to the simple
case F(y)=x, 0=x<1.

Let » be a positive integer and Y, <Y,;<::--<Y, be the order sta-
tistics corresponding to Xj, X;,---, X,. Define

0 ’ y<Yl
(2) Fﬂ,z(y)z k/l, Yk§y<Yk+1, k-:l, 2,"', n_].
na, y2Y..

Thus F, (y)=(n/)F,(y), where F,(y) is the ordinary empirical distribu-
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tion function. F, ,(y) as defined here will be used in the sequel. Let
Y, be a real number with F(y,)=b. We will now derive an explicit
form for

(3) Pe, ) =P{Lub.ecysy, [F@)— FF@)ISe)
and for

_ Fa)—-F¥@) .,
(4) Mo, By=P{lb ey, TR <

THEOREM 1. For N,, X, X;,--- subject to the previous conditions,
and 0<e<bhb<1,

(5) Pye, b)=1—ea U(g)] [(Re+ 7)Y/ §1]e~%

=ed S [(Re+g)Y5le .

J=[a(d-e)1+1

PrROOF. By the independence of N,, X, X;,--- and the distribution
free property,

(6) P(e, )= 33 (e~ /n) P, {Lu.buacyzs (4 — Fy (W) Se)

Following the proof of Theorem 1 of [7] and slightly changing the an-
alysis to handle the extra parameter i, one obtains

(7) P, {(Lub.ocyss (4—Foiy)) =¢}

[RICETA)]

=1- 5 (% )A—e—GRrC+EmY,

j=0

and substituting this expression in (6) and interchanging order of sum-
mation and summing on 7, we obtain the first equality of (5). The
second equality of (5) follows from the fact that

2 (%) a—e=Gmy-e+Gaye=1,
which statement, in turn, follows immediately from Lemma 3 of [6].

THEOREM 2. For N,, X,, X;,--- subject to the previous conditions,
e>0 and b such that 0<e/(14+¢)<b<1,

a+ep-e [/ 7 PNt/
8 M(e, b)=1——5 2 [( : J > z]
(8) (e, 9) 1+4¢ E’ 1+4¢ + 1+ /‘7

-exp(— ) >
14+ 1+
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=T e | Tart 1) /7
14-¢ f=l'2[(14§b-e}]+l 1+ 1+e J

1+ 1+4¢

ProoF. By the independence of N,, X;, X;,--- and the distribution
free property,

(9) My(e, b)=3} (e”/n)) P, {1 Whosyes EIIL;(?/)q} ,

Following the proof Theorem 1 of [6] and slightly changing the analysis
to handle the extra parameter 2, one obtains

10 Pllubegs ﬂ_ll”na_(y_)<5}
)

[1((1+e)b s)]< )( c >n-j
1+e i= 2(1+e) 1+4¢

< Z(l-i—e) 1+e )

=13 (3)(1- =
T 14e 4= [1((1+e)b €1+ 2(1+e) 1+e

' <X(11—e) + 1:Le>

Substituting these two expressions in (9) and interchanging order of
summation and summing on n we obtain both forms of (8).

In our proofs we have used the trivial fact that, if N, is independ-
ent of the X;, for any arbitrary measurable function ¢ we have

PlolF*(y), F(y)1<e} =g (e”*[n!) P{g[ Foiy), F(y)1<e} .

Using results of [3] and [5] for P{¢[F,.y), F(¥)]<e|F=K} and this
relation one can determine computational methods for exact power func-
tions for the general hypothesis testing problem

H,: F=Hversus H,: F=K
where H and K are continuous distribution functions.
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