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A characteristic function ¢(¢) (or the corresponding distribution F') is
said to be semi-stable, if for some constants y>1 and ¢>1,

(1) ot)=¢'(ct), for all ¢

holds. Every semi-stable characteristic function is infinitely divisible.
A complex valued function ¢(t) defined on the real line is a non-normal
semi-stable characteristic function which satisfies (1) if and only if it
admits a representation

(2) log ¢(t)=iﬁt+8: (e“‘—l— ﬁxxz )dM(x)

’ itr__ 1 __ it )
+{7_ (o1 - )aNG),

where

i) B is a suitably chosen constant,
il) a=logr/loge, 0<a<2,
ili) M(x) and N(x) are monotone non-decreasing and are expressed as
M(x)=—i(log x)x™*, N(—z)=p(log x)x~*, A(t), u(t) e P*(loge) (=set
of all periodic functions with the period log c) ([5], [9], [10]).

¢(t) is a stable characteristic function if and only if A()=2 and p(t)=p
are constants (and 2=pg when a=1). A distribution G is said to belong
to the domain of attraction (or domain of partial attraction) of F, if for
some {B,} and {A4,}

(3) G*(B,x+A,)

converges (or contains a subsequence which converges) weakly to F,
where asterisk denotes the convolution operator.

Every semi-stable (or stable) distribution belongs to the domain of
partial attraction (or the domain of attraction) of itself. It is known
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that a distribution G belongs to the domain of partial attraction of the
semi-stable distribution F' corresponding to (2) if and only if for some
{C,}, C,>0, and for an increasing sequence I(n) of positive integers,

(4) lim I(n)(1-G(C.x))=—M(z) x>0,
(5) li_g} I(n)G(—C,x)=N(—x) z>0
(6) lim Tim I(n){Sm(e SdG(C,x) — (Sm« a:dG(C,,x))z} =0

hold (see Theorem 4, Section 25, [3]) and that, when the attraction is
“complete ”, i.e., when I(n)=n, (4)-(6) are equivalent to

1-G(yx) _

7 lim Ex~e £=20
(7) T Gy)
and
. Gyzx) .
8 lim T8I — o
(8) Y Go)

where Gy(x)=1—G(x)+G(—=), #>0. This occurs only when A(t) and p(t)
are constants, i.e., only when ¢(t) is stable (see Sections 33-35, [3]).
Hereafter we consider “ partial” convergences of the type

. 1—-G(a"x) _
(9) 2‘1_1:2 W—R(x) ,
. G(a"r) —
a in G s a1,

Since 1—G(x) and Gy(x) are monotone non-increasing the same is
true of the limiting functions R(x) and S(x). We do not exclude the
possibility that S(§)=co for some positive & (necessarily<1). This is the
case if and only if S(a)=0. Except for this case we always assume
without loss of generality that (i) the limiting functions are right con-
tinuous, (ii) the convergences take place at every point of continuity of
the limiting functions, and that (iii) the limiting functions are continu-
ous at r=a.

We now state the theorem to be proved.

THEOREM 1. Suppose (9) and (10) hold, and put a=—log S(a)/log a
(=0). Then we have the following.

a) If a<oo, then R(x)=£&(log x)x~*, S(x)=7x(log x)x~*,
where £(t), 9(t) € P*(log a) and 7(0)=1.
b) G has the moments of positive order f<a. If a<oo, any moment
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of order B>a=0 does ot exist. Especially if a=oo, then G has all the
moments, while if a=0, G has no moment of positive order at all.

¢) If a>2, G belongs to the domain of mormal attraction of the normal
distribution.

d) If a=2, G belongs to the domain of attraction of the mormal distri-
bution.

e) If 0<a<?2, G belongs to the domain of the semi-stable distribution F
corresponding to (2) with

M(z)=—&(log x)z™" ,
and

N(—2)=(7(log x)—§(log x))x™*

or more precisely, if {X,} is a sequence of independent random variables
each having the distribution G, then there exists a sequence {A;} of real
numbers such that the distribution of the mormalized partial sum (X,+
v+ Xyw)lar— AL, where I(n)=[G(a™)"], converges to F.

f) If a=0, G belongs to no domain of partial attraction.

COROLLARY 1. (See the remark at the end of the proof.) If M(x)=
—N(—z)=—¢&(log x)x™° 18 concave, then the semi-stable distribution cor-
responding to (2) is unimodal.

COROLLARY 2. The semi-stable distribution F corresponding to (2)
has the moments of positive order B if and only if p<a. ([7], [10], [11])

THEOREM 2. Suppose that for some increasing sequences I(n) of posi-
tive integers and C, of positive numbers such that C,.,/C, is bounded (by
d>1, say), convergences

(12) lim I(n)(1—G(C,x)) = z~"

n—oo

(13) lim I(0)G(—C,) =™

hold, where 0<a<?2, 220, p=0 and A+p>0. Then G belongs to the do-
main of attraction of the stable distribution with M(x)=—2az"* and N(—x)
=px=c.

THEOREM 3. Suppose that, in addition to (9) and (10), another con-
vergences

. 1-G(b"%) _
(15) 1,,112 G U(x)
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and

. G(b"r) _
(16) lim G Vi), (b>1)

occur. If p=logaflogb is an irrational number and if 0<a<2, then
U(x)=R(x)=¢x"*, V(x)=S8S(zx)=2x"" and G belongs to the domain of attrac-
tion of the stable distribution corresponding to (2) with

M(x)=—-U(x)
am and

N(—z)=V(x)—U(x) .

Remark 1. Convergences (9)-(10) make sense only when Gy(x)>0
for all 2>0. If Gy(x,)=0 for some z,<oo, the distribution G is con-
centrated in the finite interval [—u,, 2,] and G belongs to the domain
of normal attraction of the normal distribution.

Remark 2. The tail Gy(x)=1—G(x)+G(—x) is monotone non-increas-
ing and approaches to zero as x—oco. This fact is used invariably in
the following.

Remark 3. The boundedness of the ratio C,,,/C, is equivalent to
that of the ratio I(n+1)/I(n).

Remark 4. Theorems 2 and 3 state that positive function Gy(x)
varies regularly if for an increasing (to infinity) sequence {C,} such that
C,.+1/C, is bounded, lim G|(C,x)/G\(C,)=2"°, or if for some a>1 and b>1

such that loga/logb is irrational, lim Gy(a"r)/Gi(a") and lim Gy(b™x)/G(b")
exist.

PrROOF OF THEOREM 1.
a) Evident.

b) Suppose first that a=oco (or S(a)=0), and let =0. Let ¢>0 be to
small and n, be so large that a’s<1 and that for any n=n,, Gy(a"*')/
Go(a")ée.

Putting 2,=a™, we obtain
(18) Gy(ar'z,)/Gy(arzy)=z¢, , 0=¢,Ze¢, »=0,1,2,---
Then

| 2 |PdG < (ax,)’a’*Gya*x,)

Sa’xuélx |<artiz,
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=(aé: o) afPey. - e, 1Go(Z))
=(ax,)’Gy(x,) (a’e)? , »=0,1,2,:--

Hence E(] X|*)<oo. Suppose next that a<oco (or S(a)>0). Let ¢>0 be
a small number, and let n, be so large that

Gy(a™)[Goa")—S(a)<ea™

holds for all n=n,. If x,=a™, we have for any nonnegative integer p

(19) Gi(a™'z0)/Go(a”z)) = S(a) +e,0~
=a~(l+s,),
where |¢,|<¢, p=0,1,2,---. When 0<8<a, let ¢>0 be so small that

1+e)fa~?=c<1.

oo

(20) |z |PdG(x)

pgl Saﬂxo<|x|§aﬂ+lxo
= 5:]1 (a?*'m)*Go(aP,)
=(@ayGoaz) 31 T (Lhe)+1)

< (az)'Gylaz,) i <o,

When g8>a, let ¢>0 be such that (1—e)a’*=d>1, and 1—(1+¢)a™
=¢£>0. Then,

(21) E( X1z | % |*dGi(x)

Savxo<|:c |Sartiz,

arx,)"(Gy(an,) — Go(a?*',))

\Y
nM& ||M8 nMS

(a"xo)’ Gi(arz, )( _Géi‘(l';;f;) )

zesto(axo)( 3T (@+epar+1)
=¢xiGy(ax,) i:,) d?=o0

¢) A direct consequence of b).

d) Suppose a=2. Then (19) holds with a=2. If a?z,<s<a’*!, we have

@ |, 260z, ., ric@23 2dG(z)

a*zo<[z|5a*+lxo

23 (@) (Gia*s) ~Gda*m)
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=,§ (a"wo)*Go(a*xo)(l_ %ﬁ_«:;%)_ )

2(1-(1+e)a™) 2 (@*20)a**~PGy(a o) T[

k1 +e,

=(1—(1+e)a2)(a2,) Go(a’xy) Z ( l-ll— )p-Hl

=~ (1490 @ ) Gularzy) 3 (1)’

21— (14e)aYa 8Go(s) 1— (L+&)P)e (1 +¢)" .
Hence

$Gs) . d e(1+¢)

, S @ —1—e 1—(14¢)
Slxlés wdG(w)

or

& G
o<Ilim Slx'” <% (1+e.

300 2__1—
Slxlésxsz(w) at—1—e

Since ¢>0 is arbitrary,

st S dG
lim —J=>s ¢ .
Linaed 2
|2|<s 2’dG(x)
The desired result follows from Theorem 1 of Section 35, [3].

e) Let I(n) be the integer part of 1/Gya™): I(n)=[1/G\(a™)], and put
C.=a". Then by virture of a), (9) and (10) imply (4), (5) and (11). (6)
is proved as in the proof of Theorem 2 of Section 35, [3] (pp. 177-178).

f) Suppose finally that a=0. Then from a), R(a?)=1, for p=0, +1,
+2,...

If a?<x<a**!, and if a*<y<a™*', then

Gya"a**’) _ Gi(yx) . Go(a~*'a?™)
#) G@) =G = Gl@®

Both extreme sides of (23) tend to 1 as n—oo. Hence

(24) }gg Go(yx)/Go(y)=1.

The desired result is obtained from Theorem VII of [1] (see also 7,
p. 190, [3]).
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PrOOF OF COROLLARY 1. Let A be a positive number such that

M(A)>—1/2. Then the distribution defined by,
1+M(x+A4) =220
(o)~
—M(—x+A) <0

is symmetric and unimodal. Put
€ when £(t) € P*(log¢),
a:{ 2 when &(t)=¢ (=constant).
Then we can easily verify that
lim (1-G(a"2))/G(a") = — M(x)/2

and
Ii_{g Gya"x)/Gya™)=— M(zx) .

By Theorem 1 e), G belongs to the domain of partial attraction of
F, or more precisely,

G o) (I(m)=[1/Ga")])

converges weakly to F. Since G is symmetric and unimodal, so are
G (x)=G*"(a"z), n=1,2,---. F, being the limit of a sequence of uni-
modal distributions, is itself unimodal. q.e.d.

Remark: The corollary is a special case of the following theorem
proved by P. Medgyessy [6].

THEOREM. Let ¢(t) be an infinitely divisible ch.f. with the Gaussian
component ¢~ and the spectral functions M(z) (x>0) and N(z) (x<0).
If M(x) is concave and if M(x)=—N(—zx), then the corresponding dis-
tribution F is symmetric (about some point) and unimodal.

We shall give below a proof somewhat different from that of P.
Medgyessy. It suffices to prove that the distribution Fy(x) correspond-
ing to the ch.f. ¢(t)e’"™? is symmetric and unimodal.

Let {a,} be a sequence of positive numbers such that a,—0 and
M(a,)/n—0. Let {G,} be a sequence of symmetric unimodal distribu-
tions defined by,

1+ M(z+a,)/n =0
G,.(x)z{
—M(—z+a,)n <0,

Then we have




252 RYOICHI SHIMIZU
(@) n(1—Gu(x))=nG(—2)——M(z) as n—oo
(b) Oén[glzks wdGa(x)— (Sl

=2 So FdM(z+a,)<2 So FdM(x)—0 as e—0.

a:dG,.(a:))z] =2n S: 2*dG(x)

z|<e

It follows from Theorem 4, Section 25, [1], that, if {X,,,---, X, .} is
an independent system of random variables each having the distribution
G.(z), then the distribution G**(x) of the sum X, ,+---+X,, converges
to Fy(z). Since Fi(x) is the limit of the sequence of distributions ob-
tained by the convolution operation of symmetric (about zero) unimodal
distributions, F(x) is itself symmetric and unimodal.

PROOF OF COROLLARY 2. We assume without loss of generally that
¢(t) is symmetric. Then, if I(n)=["],
P(t)=¢" () Z " (¢ "t)plc™")
2¢" (e Dp(e ) =p(t)plc ) > (t) -
This shows that
F*™(chg)— F(x) .
Hence we have
iiqm” I(n) (1——F(c"x))=}li_1.2 F(—cx)=—M(x),

which implies
lim (1— F(c"z)) [Fo(¢")= M(z)/2M (1)

and
lim Fy(c"z) [Fy(c*)=M(x)/M(1) ,

n—oo

where F(x)=1—Fy(z)+F(—x).
Now Theorem 1, b) is applicable for <a, and for g>a. Moreover
in this case we have

Fyc)er=Fy(c")y"~Fi(c) I(n)—>1,

and for sufficiently large =,

S+ v dF(z) 2 (F(c*)— F(e")

_ Fo(cn-l-l)

=c"Fy(c") (1 F ()

)z4>0,

where A is independent of n. Hence E| X|*=oco. q.e.d.
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PrOOF OF THEOREM 2. (12) and (13) imply that lim (l—G(C,,x))_/
G(Co)=¢&x7", lim G(C,x)/G|(C,)=2"°, £§=2/(A+p). Let ¢>0 be a given
small number, and let

(25) r=2, <, < <zx,=dzx
and
(26) 1=y <u, < - - <u,=d

be divisions of intervals [z, dx] and [1, d] respectively such that

(27) 0<xi+1_xi<5 ] 0<u‘+1—u¢§6
and
(28) 0<zi*—ain<e, O<ur—uin<e

hold. Let m, be so large that for any n=mn, and for ¢=0,1,.--, p,

(29) Gy(Cox)/G(C) =27 "+,
and
(30) GO(Cnui)/GO(Cn) = u;a + 6i,n y

where |¢;,|<¢, |0;,]|<Z¢, 1=0,1,2,---,p, n=n,.
If C,<y<C,,;, n=m,, then for some 7 and j

(31) nSEo<min,  w= ”n <Usa
and
(32) ( Y z) - 2ex x::1+e.-+l,,.=ic(f(ﬂgb;*)
GGy
g( é’,, x>'“+2e :
(33) ( gﬂ)'"—zsgu;:ﬁam,s%i
S St a1,
(2 e

Using these inequalities and
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2)/e0)

— Gi(yx) < Go(Cnxi) Go(Cauy41)
Gy) — G«(C,) G«(C,)

Go(C,.x;.H) G.(C,,u )
®4) e/ e sa(e g

we obtain

(35) ([C)x) " —2¢ _ Go(yx)  (Y[Ca)x)"+2¢
WIC)"+2 — Gly) — (W/C.)"—2¢

or

(36) _9c A+ _Golyx) L pay o AL H27)

1+2:d° — Go) 1—2ed-

(36) holds for all large y. Passing to the limit (y— oo and then ¢—0)
we obtain (8). (7) with §=1/(1+p) is obtained in the same way. (We
make use of monotonicity of 1—G(x).) q.e.d.

PROOF OF THEOREM 3. We shall show that (9)-(10) and (15)-(16)
imply that R(x)=U(x) and S(x)=V(x). Since by assumption p=loga/
log b is irrational, it follows from Theorem 1 a) that R(x)=U(x)=¢&x""
and S(x)=V(x)=2"", where ¢ is a constant. The desired result follows
then from Theorem 2.

Let {n.} be a sequence of positive integers such that as k— oo,
n,— oo and no—[n]—0. Write n(k)=[n,p] and c,=b""T",

Let ¢>0 be a given small number and let ky=ky(z, ¢) be an integer
so large that we have for any k=k,

| Gi(6"®2)[Go(b™) -V (@) |=e |
| G(0"® (1 +e)2)/G(0" ) — V(1 +e)2) |<¢,
| G0 (1 +€))/Go(b"®) =V (1 +e) [=e,

and
0<Z¢c,—1<¢.
Then,
(37) V((1+e)z) —e=Go(0"®(1+¢))/Go(b™*)
SG"PR)[G(0" )=V () +¢
and
(38) V((1+€)x) —eGo(d" (1 +¢))/Go(b™®)

SG("Pe)/Gy(0"P)<1 .
On the other hand we have
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Ga™z) _ Gib'z) _ Gi(b"Pcix) / Gil6™¥cy)
Gia™)  Gd™)  G(b"®) Go(6"®)

From (37)-(39), we obtain

(39)

_ . Goa™x) V(x)+e
(40) V((1+e)x)—e Gua™) gV Ate—_s "’ for all k=k,.

Passing to the limit (first k— oo, and then ¢—0), we get
V(z)=S(x)=V(2).
Equality R(x)=U(x) is obtained in the same way. q.e.d.
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