A FUNDAMENTAL RELATION BETWEEN PREDICTOR IDENTIFICATION
AND POWER SPECTRUM ESTIMATION

HIROTUGU AKAIKE

(Received Feb. 20, 1970)

Summary

An asymptotic linear relation between the FPE (final prediction error)
of the predictor obtained by using the least squares estimate of auto-
reggression coefficients and the integrated relative mean square error of
the estimate of power spectrum obtained from the fitted autoregression
model is established. This relation provides a link between the predictor
identification and the power spectrum estimation and has already been
used as a theoretical background of a former paper [3].

1. Introduction

Recently the present author introduced the notion of final prediction
error (FPE), the mean square error of one-step prediction, for the eval-
‘uation and decision of the order of autoregressive model to be fitted to
data for the purpose of prediction [1]. A procedure, which was later
called the minimum FPE procedure and is aiming at approximately mini-
mizing FPE [4], was found to be useful for this purpose and the use
of the power spectrum of the fitted autoregressive model as an estimate
of the power spectrum of the original process was suggested [1], [2].
Though the theoretical background of the use of the minimum FPE
procedure for prediction was discussed [4], the theoretical justification
of its use for the spectrum estimation was left open.

In the present paper it will be shown that the integral over the
whole frequency of relative mean square error of the power spectrum
estimate is asymptotically in a linear relation with FPE when the process
under observation is a finite order autoregressive process with independ-
ently and identically distributed innovations with finite fourth order
moments and the order of the fitted model is larger than or equal to
the true one. This result, which was first announced in [3], shows that
the minimum FPE procedure which was originally developed to avoid
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the use of the practically controversial notion of infinitely long autore-
gression for prediction can also be useful for the purpose of power spe-
ctrum estimation.

2. Evaluation of the integrated mean square error of autoregres-
sive power spectrum estimate

For the convenience of the reader a heuristic explanation of the
asymptotic variance formula of the estimated power spectrum will be
given first. A justification of the formula can be found in [2].

For the stationary autoregressive process

2.1) X(n)= 3"3 a, X(n—m)+e(n)

where ¢(n) is a white noise with zero mean and E¢(n)=d¢’, the power
spectral density function p..(f) is given by

(2.2) D)= A(f) |},
where
(2.3) A(f)=1— i a,, exp (—i2zfm).

We assume that &(n)’s are mutually independently identically distributed
with finite fourth order moments. When a,, and ¢ of (2.2) are replaced
by their estimates &, and ¢ respectively, it gives an estimate p..(f) of,
p.(f). The total differential 4p..(f) of p..(f) for the differentials da,=
a,.—a, and d=a'—d* is by definition

2.4) tp,(1)=2D) g 53 Beld) g,

m

The total differential 4log p..(f) of log p..(f) is equal to 4p,.(f)/p:(f)
and is given by

(2.5) Ap:f) _ 40* _ 4| A(S)

pf) & AP

where 4] A(f) "= A)ZAG)+AVA), 4A(f)=— 3} da, exp (—i2afm)
and — denotes the conjugate complex.

When for a given set observations {X(n); n=1, 2,---, N} the least
squares estimates of a,, are adopted as d, and the corresponding sample

average of the square of é(n)=X(n)— i a,X(n—m) as ¢* it can be shown
m=1

that in the limit distribution ¥N4da,, and ¥ N 4¢* are mutually independ-
ent [2]. Thus for this estimate it follows that
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2.6) E’mN<%((J{;))Z=EwN<%)2+EWN<%)Z ,

where E. denotes the mean value in the limit distribution. This E.N
(4D )/P2(f))* is equal to the variance of the limit distribution of
N(@:(f)—0::())/0:(f) as N tends to infinity [2]. From the relation

4] A(S) P A(S) P=4A(f)A(f)+4A()|A(S), it holds that

The limit distribution of ¥Nda, (m=1,2,.-., M) is Gaussian with zero
means and covariance matrix ¢!Rz', where R, is an M X M matrix with
the (7, 7)th element R,(7, ))=EX(n+1i)X(n+3) [2]. From this fact it
follows that

o 44|
@8 V- BN G 2
X X 12 exp (12xf (m—1))
=% 3} F.Nda, da, S_m = ar
xox 12 . _ e
=21 S RSQm) " exp(i2efim D)
As & A(f) '*=p..(f), it can be seen that
1/2 . 0.2 _
(2.9) S_m X (i2ef (m—1)) T df = Ra(m, 1)

Combining these two results, one can get

(2.10) S‘_’; EmNI%%-)lzdf=M.
In the same way as in (2.8) it is seen that
e[ EA(0Y

-§ em ] ety

From the stationarity assumption of X(n) characteristic equation 1—
M
2} a,z"=0 has all its roots outside the unit circle and X(n) has a re-
m=1

presentation

(2.12) X(n)= g bes(n—F) ,
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where b,=1 and :V;‘, | by | < oo, i.e., b, is the impulse response of the linear
l=1

system which produces the output X(n) to the input e(n) and satisfies
the relation

(2.13) b 3 Guben=0rs

where §,,=1, =0 (k+0) and b,=0 for ¥<0. The frequency response
function of the system is given by

(2.14) LS 1
A() 1—> a, exp (—12rfm)

m=1

oo

=lc2 b, exp (—12xfk) .

By using this relation and the fact that b,=0 for k<0 it can be shown
that

(2.15) S”Z exp (121rfp)( )d 5
-2 A(S)
= _z,j by
=0 for p<0.
Consequently (2.11) gives
1/2 4A(F)\? _
(2.16) S_l/zEmN<———A( L )df 0.
Summarizing these results, (2.7) and (2.6), one can get
e 4p.(f) 47
2.17) S_UZE@N( il ) —E. N( b ) +2M.

Incidentally, the factor 2 in front of M was missing in [3].

3. Relation between the integrated relative mean square error and
FPE

It can be shown as in [4] that when &, is applied to another inde-
pendent realization Y(n) of X(n) to give a one step prediction f’(n)=
M
3 @,Y(n—m) it holds that
m=1

3.1) (FPE)M—“‘N‘E NIE(Y(n)—Y(n)y]

1
=—d(N+M),
N WN+M)
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where E, denotes the expectation conditional on the realization of X(n)
from which @, is obtained. This (FPE), was adopted as an asymptotic
evaluation of the mean square one-step prediction error or the final pre-
diction error (FPE) [4].

It should be noted here that (2.17) and (3.1) are valid for M greater
than or equal to the order K of the process, which is defined by the
relations ax#0 and a,=0 for m>K. This fact shows that in this range
of M an asymptotically linear relationship holds between the integrated
relative mean square error of the autoregressive power spectrum esti-
mate and the FPE. When the correction for the possibly non-zero mean
is introduced, M in (8.1) should only be replaced by M+1.

The present observation shows that the application to power spec-
trum estimation of the result of the minimum FPE procedure [1], [2],
[3], which was originally developed to avoid the use of unnecessarily
long autoregression model for prediction by watching the behavior of an
estimate of (FPE)y, is reasonable from the stand point of controlling
the relative mean square error of the corresponding estimate of the power
spectrum.
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