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1. Introduction and summary

In a recent paper by the present author [1] a simple practical pro-
cedure of predictor identification has been proposed. It is the purpose
of this paper to provide a theoretical and empirical basis of the procedure.

Our procedure is based on a figure of merit of a predictor, which
is called the final prediction error (FPE) and is defined as the mean
square prediction error of the predictor. We consider the application of
the least squares method for the identification of the predictor when the
stochastic process under observation is an autoregressive process generated
from a strictly stationary and mutually independent innovations. The
identification is realized by fitting autoregressive models of successive
orders within a prescribed range, computing estimates of FPE for the
models, and adopting the one with the minimum of the estimates.

The statistical characteristics of these estimates of FPE and the
overall procedure are discussed to show the practical utility of the pro-
cedure. A modified version of this original procedure is proposed, which
shows a consistency, as an estimation procedure of the order of a finite
order autoregressive process, which is lacking in the original procedure.
The notion of FPE is also applied for the determination of the constants
of the decision procedure, which was proposed by T. W. Anderson [2]
for the decision of the order of a Gaussian autoregressive process, to
provide a third procedure.

Performances of the three types of procedures, the original one, a
modified version and that of Anderson’s type, are compared by using
various realizations of artificial time series. The results show that for
practical applications, where the true orders of autoregressive processes
would generally be infinite, the original procedure would be the most
useful.

Implication of the present identification procedure on the estimation
of power spectra will be discussed in a subsequent paper [3].

We shall use the convention of denoting by (u(l)) the column vector
of u(l) 1=1,2,---, M) and by v or (v(, m)) the matrix with (, m) ele-
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ment v(,m) (,m=1,2,---,M). When the dimension M is of special
interest we shall add the subscript M and thus u, and v, are used for
the above # and v. The symbol / will be used to denote the transpose of
a matrix or a vector.

2. Definition of FPE of a predictor and the statement of the
problem

Here we first introduce a general definition of a figure of merit of
a predictor. This is defined simply as the mean square prediction error
and is called the FPE (final prediction error) of the predictor, i.e., for

a predictor X (n) of X(n)
(2.1) FPE of X(n)=E(X(n)—X®)).

In practical situations X (n) is given as a function of the recent values
of X(n) and the structure or the parameter of the function is determined,
or identified, by using the whole past history of X(n). Assuming the
dependency of this identified structure on the recent values of X(n)
which are to be used to give X (n) to be decreasing as the length of
the past history used for the identification is increased, we consider the
idealized situation where the dependency is completely vanishing. This
is equivalent to the situation where the structure of a predictor is
identified by using an observation of a process X(n) and, using the
structure, the prediction is made with another process Y(») which is
independent of X(n) but with one and the same statistical property as
X(n).

When the process X(n) is stationary and the predictor Y'(n) of Y(n)
is linear and given by

A M
2.2) Y(n)zgldu(m)Y(n—m)—}-d,(O) ,
where ay(m) is a function of {X(n)}, we have

23) FPE of Y(n)=d(M)+ 3} 3 E(dau(l)das(m)) Vi, m) ,

=0 m=0

where

24 AM)=B(Y (1)~ 3 ax(m)Y (n—m)—ax(0))

=Min E(Y(n)— 3 a(m)Y (n—m)—a(0))",

(a(m)}

(2-5) VM‘+1(l’ ’M)=EY(n—l)Y(n—m) l, m:l, 2’ oo, M ,
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Vai(0, m)= Vi, (m, 0)
=FEY(n) m=12,---, M,
Vi1(0,0) =1,
and

(2.6) day(m)=ay(m)—ax(m) m=0,1,.--, M,

where a,(m) is defined by (2.4) and is giving the best (in the sense of
mean square) linear predictor. (2.3) shows that the FPE in this case
is composed of two components : the first one corresponding to the FPE
of the best linear predictor for a given M and the second one due to
the statistical deviation of d,(m) from ay(m). Generally, as the value
of M is increased, the first term o*(M) will decrease but the second term
will increase for a finite length of observation of X(n).

Given a set of predictors the definition of FPE naturally suggests
the adoption of the predictor with the minimum value of FPE as opti-
mum. The problem we are concerned with in this paper is the reali-
zation of a good approximation to the optimum choice of M for the
above stated stationary and linear case, using the information obtained
by observing X(n) for a finite length of time.

3. FPE of the least squares estimate of an autoregressive model

Hereafter we shall assume that X(n) is a stationary autoregressive
process generated by the relation

3.1) X(n)= 3 a(m)X (n—m)-+a(0)+e(n) ,

where ¢(n)’s are mutually independently and identically distributed ran-
dom variables with Ee(n)=0 and E¢(n)=d.

Given a set of data {X(n); n=—M+1, —M+2, ..., N}, the para-
-meter ay(m) of our predictor is defined as the least squares estimate of
a(m), i.e., ay(m) is the solution of

(3.2) S} Cuem, Din(m)=Co0,)  1=1,2, -+, M,
and

3.3) ax(0)=X,— Gu(m)X, ,

where

szN"l i_IX(’n—-M) (m:(), ]_’ 2’ ...’M)

and
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Cuslm, =N 3 (X(n—m) — ZHX(n—)— X)) .

Following the definition of Y(n) given in the preceding section, our
predictor Y(n) of Y(n) is given in this case by
M

(8.4) Y(n)= Eld,(m)(Y(n—m)—)_(m)+)_(0 }

We are assuming that Y(n) is generated by the relation Y(n)=
M

pIY Y(n—m)+a,+35(n), where d(n) has one and the same statistical
p;‘operty as ¢(n). We have

Y T (m)=om)— 33 da(m) y(n—m)—(4Zs— 33 du(m)dXa)

where y(n)=Y(n)—E(Y(n)) and 4X,=X,—E(X(n)).
Taking into account the independency of y(n) of da, and 4X, we get
(3.5) FPE of Y(n)=E(Y(n)—Y(n))
=i+ 3 S E (day(m)dax)R..(1—m)

+EAZ,— 3 bu(m)AX,Y
where
R.(l—m)=EX(n—)X(n—m)—(EX(n))’ .

For the asymptotic evaluation of this FPE of Y(n) we make use of the
following basic theorem.

THEOREM 1. Under the present assumption of X(n), the limit dis-

tribution VN 4X,=+vN(X,—E(X(n))) and N dax(m)=+N (Gx(m)—a(m))
(m=1,2, ---, M), when N tends to infinity, is (M+1)-dimensional Gaus-
stan with zero mean and the variance matrix

92 0%
(3.6) .ﬁ( ) ,
(" Ryt

where 6=1— {]‘ a(m), Ry is the MX M matriz of R(, m)=R..(l—m) and
0 denotes a zero wvector.

From the ergodicity of the process X(n) we know that C.(I, m)
converges to R..(I—m), as N tends to infinity, with probability one.
Thus a, is a consistent estimate of a,, in this case with convergence
with probability one. From (3.2) we have, for [=1,2, ---, M,
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3.7 (@x ()= (Cax(m, D) ™(C;x(0, 1))
= (aﬂ(l)) + (Cxx(mr l))_l(ccz(l)) ’

where C,()=N"! é e(n)(X(n—1)—X,). Thus we get

(3.8) (dax(®))=(Cox(m, D) (C.cD)) -

From the consistency of C,(m,!) we know that the limit distribution of
VN 4X, and ¢ Nda, is identical to that of YN 4X; and vN RzC... By
applying the Diananda’s central limit theorem [4] for finitely dependent
sequence, as was done by Anderson and Walker [5], we can easily get

LEMMA. The limit distribution of ¥YN4X, and ¥vNC,,, when N
tends to infinity, is (M+1)-dimensional Gaussian with zero mean and the

variance
o2 0%
a .
0y Ry

It should be noted that as the power spectral density of X(n)—EX(n)
at zero frequency is ¢’0~%, where 6=1— i‘. ay(m), the variance of the
limit distribution of N 4X, is equal to 0"531‘2. The assertion of Theorem
1 is a direct consequence of this lemma and the observation following
(3.8).

Now we return to the evaluation of FPE of Y(n). Instead of tak-
ing the expectation of (Y(’n)—Y(n))2 directly as suggested in (3.5) we
first take the conditional expectation of (Y (n)— f’(n))2 for a given X(n).
This we will denote by Ex(Y(n)—Y(n))z. From the independency of
Y (n) of X(n) we have
(39)  E(Y()-Y)=c+ 3 3 dau(mdan®Rul—m)

m=1

— M —
+(4X,— 2=1(‘1,1.,(')'n)AX,,,)2 .

Taking into account the fact that in the limit the differences between
VN 4X, and YN 4X,, (m=1,2, ---, M) are stochastically vanishing, we
can see from the theorem that N{E. (Y (n)— Y(n))z—oi} has a limit distri-
bution with expectation equal to (M+1)¢>. This observation suggests
the following definition of (FPE), as an asymptotic evaluation of FPE

of f’(n) :
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(3.10) (FPE), of Y(n)= (1+%)f .

Our identification procedure of the predictor will be based on some esti-
mate of (FPE),.

4. An estimate of (FPE)ym and the minimum FPE procedure
From the ergodicity of X(n) we know that
@1 S(M)=C.0, 0)— 3 62 0)C.ul0, ]
is a consistent estimate of ¢. By (3.2) we have
SUM)=Cal0, 00— 3 31 tu(OCurm, Diu(m)
and by taking into account the relation
31 day(m)Ceu(m, 1) =Car0, )= 3 Cualom, Da(m)
we get

(42 S()=C.i0,0)—2 2 a(m)Co0, m)+ 3 3 aa(m)Cur(m, )

m=1
M

— 31 ) day () (m)Cysm, 1) .

=1 m=1

From the definition of C,,(m,l) we have

(4.3)  HM)=C.0, 0)—2 3 a(m)Cu0, m)+ 3 33 a(m)a()Cuslrm, )

=1 m=1

-

=N 3} (m) -,
and we get
(4.4) E(HM))=(1—N"Y¢* .

‘From Theorem 1 we know that when we assume the model (3.1) the
limit distribution of

(4.5) QM)=N 3 3} day(m)da()C,m, 1)

i=1 m=1
has expectation Md? i.e.,
(4.6) E.{QM)}=Md*,

where E. denotes the expectation of the limit distribution of the quantily
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within the braces, when N tends to infinity. These observations suggest
that it would be reasonable to adopt (1—N "Y(M+1))"'S(M) as an esti-
mate of ¢* to define our estimate (FPE)M) of (FPE), by

4.7) (FPE)M)=(1+N (M+1))(1—N (M+1))"'S(M) .

The discussions in this and the preceding sections naturally lead us
to the idea that when there are many predictors obtained by applying
the least squares method it would be reasonable for us to pick the one
with the minimum value of (FPE)M). Following this idea, for the
identification of the predictor by a single record of X(n), we proceed
as follows; we compute (FPE)(M) successively for M=0,1,---, L (L;
preassigned positive integer) and adopt &, with M=M, to define the
predictor, where (FPE)(M,)=the minimum of (FPE)M) (M=0,1, ---, L).
This process which was called by the name of FPE scheme in the former
paper [1] will hereafter be called the minimum FPE procedure.

5. Statistical properties of (FPE) (M)

To see the practical utility of the minimum FPE procedure we shall
have first to analyze the statistical characteristics of (FPE)M) (M=
0,1, ---,L) for a fixed model of X(n). We assume that the order of
X(n) is K, i.e., ax#0 and a,=0 for m>K in (3.1). We assume K=0
and exclude the case where K= —1, with a,=0, from our discussion. We
also assume that the set of data is given in a form {X(n); n=—L+1,
—~L+2,---,1,2,---,N}. From (4.3) we can see that H(M) remains
constant for M=K and thus the behavior of S(M) is dependent only
on QM) of (4.5). From the discussion of Section 3 we know that the
limit distribution of QM) (M=K, K+1, ---, L) is identical to that of
NCLyuR#C.oe, Where C.x=(C.() (=1,2,---,M). As was stated in
the lemma of Section 3 the covariance matrix of the limit distribution
of /N C..x is identical to that of {X(n—m)—EX(n—m): m=1,2, .-, M}
multiplied by o*, i.e., ®Ry. Thus the successive orthonormalization
procedure of X(n—m)—EX(n—m) (m=1,2, ---, M) can be applied to
VN C..xc to give a vector random variable U, of which limit distribution
is the M-dimensional unit normal distribution. The detail of this trans-
formation is already described in [6]. We have Uy=Ty+/N C..x With
?TyRy Ti=1I,, where I denotes the identity matrix, and the matrix Ty
of the transformation has zeros above the diagonal. From the structure
of T, it is readily seen that

T.(l, m=T.0,m) (m=12 .., M) for M<L,

i.e., the submatrix of the first Mx M elements of T, is identical to T'y.
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Thus we can see that U, is the vector of the first M elements of U, .
From this observation we can see that the limit distribution of QM) is

identical to that of a’é Ul) M=K,K+1, ---,L). The limit distri-

bution of U?*l) (1=1,2, ..., L) is then the distribution of mutually inde-
pendent chi-square variables each with d.f.1 [7]. Thus we get

THEOREM 2. For M=K, ¢7*Q(M) is asymptotically distributed as
the partial sum of the first M terms of a sequence of mutually independ-
ently distributed chi-square variables each with d.f. 1.

Now we proceed to the analysis of the statistical behavior of
(FPEYM) (M=0,1,.--,L). For any positive integer M, we define
ay(m), irrespectively of the order K, as the solution of (3.2) when
C..(m,l) is replaced by R..(—m) and define ¢/(M) by

5.1) AM)=Rer0)— 3] an(m)Res(m) .

We shall denote da,(m)=a,(m)—ay(m), where a,(m) is the solution of
(3.2). M is not restricted to be equal or larger than the order K.
Corresponding to (4.2) it holds that

(6.2)  S(M)=C..(0, 0)— é ax(DC.(0,1)

=Coi(0, 0)—2 33 4 (M)C.cl0, )+ 3 35 (D (m)Coe(m, 1

i=1 m=1

= 33 3 day @)y (m)Culm, 1) .

Ignoring the terms of order N~?, we have approximately

(5.3) (FPEXM,)—(FPE)(M,)=(1—N ~(M,+1))'(1—N (M +1))*
- (S(M,)—S(M,)— N ~{(M,— M)(S(M,)+ S(M))) ,

where 0=<M,, M,<L. If we assume the equality (5.3) to be strict, we
have for M, <M,

(5.4) Prob {(FPE)(M,)—(FPE)(M,)>0}
=Prob {S(M)—S(M,)—2N ~'(M,— M,)S(M,)> 0}
=Prob {(S(M,)—S(M))N(M,—M,)C.(0)' >2N -} .

From (5.2) we have

(5.5) S(M)—S(My)=o"(M,) — o*(My) + Xo*(M,) — *(My))
+N QM) — QM) ,

where 4(c*(M,)—d*(M,)) is obtained by replacing R,.(m,l) by 4R, (m)=
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C.(m, )= R, (m, 1) in the definition of #(M,)—d*(M;) and QM) is as de-
fined in (4.5). For M, and M, which are very small compared with N
and for which the differences ay,(m)—ay,(m) (m=1,2, .-+, My; ay(m)
=0 for m>M,) are of the order of N2, R;}0)(d*(M,)—d*(M;)) will be
of the order of N~2 from (5.1), while Cz;'(0, 0)4(6*(M,)—d*(M;)) and
C10, 0)(Q(M,)—Q(M))N ! are stochastically of the order of N~!. Thus
the probability of (5.4) will be very nearly equal to 1 in this case.
Generally we have, for M<K,

(5.6) }gn Prob {(FPE)M)—(FPE)K)>0}=1.

By (5.3) and the fact that S(M) is a consistent estimate of ¢* for M=K
we can see that the limit distribution of N((FPE)K)—(FPE)M)) (M=
K+1,K+2, .-+, L) is identical to that of N(S(K)—S(M))—2/(M—K).
As it hold that, for M=K, S(K)—S(M)=N"'(QM)—Q(K)), we can
see from Theorem 2 that the limit distribution of No *((FPE)K)—
(FPE)(M))+2(M—K) is identical to the distribution of the successive
sum of M—K chi-square variables yi(7) (¢=1, 2, ---) which are mutually
independently distributed each with d.f.1. Thus for this case we have

5.7) lim Prob {(FPE)(K)> (FPE)M))
—Prob {”iK 20)>2M—K)} .

We can see from (5.6) that by using (FPE)M) for our minimum
FPE procedure the probability of adopting M smaller than K as M, will
be made arbitrarily small when N is increased indefinitely, while (5.7)
shows that for M>K the probability of observing (FPE)(M) small than
(FPE)(K) tends to a non-zero constant. This last observation shows that
the value M, of M adopted by our minimum FPE procedure as the order
of the predictor is not a consistent estimate of K. This does not neces-
sarily mean a serious draw back of the procedure for practical applica-
tions. The probability itself, as suggested by (5.7), of adopting M, larger
than K is not necessarily intolerable for practical applications. Further,
it will be more common for us to encounter with the situation where
the theoretical value of K is considered to be infinity. For this case
the result of the foregoing discussion following (5.5) suggests that the
probability of M, being equal to an M for which |a,(m)—a(m)| is larger
than N - and the corresponding ¢*(M) is differing from o¢* by a quantity
greater than N~'2R,.,(0) would be very small. Also (5.5) suggests that
in this case (5.7) will hold approximately when the diffference of ¢*(K)
from ¢* is made significantly smaller than N,

Admittedly our present analysis is quite rough for the range of
M<K. We will supplement the discussion with numerical examples in
Section 8.
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The procedure which is obtained by replacing the definition of
(FPE)(M) in the minimum FPE procedure by

(5.8) (FPE)(M)=Q1+N"(M+1))1-N"(M+1))"'S(M) ,

where 0<a<1, will be called the minimum (FPE)* procedure. By this
modification we shall certainly obtain the consistency of M, as an esti-
mate of K of a finite order autoregressive process. But the modification
may add much to the tendency of M, taking values too small for the
minimization of FPE. In Section 8, the performance of the minimum
(FPE)"* procedure will be compared with that of the original procedure.

6. FPE and Anderson's procedure

T. W. Anderson [2] has given a multiple decision procedure for
choosing the order of dependence K in normally distributed time series
of the type (8.1). The procedure is such that it is completely specified
by, and optimum for, a selection of probabilities p, (m <l<gq) for some
preassigned m and ¢, where p, is the probability of deciding on the
order of dependence to be ! when the actual order is less than I. Thus

in this procedure we are going to keep small the probabilities ¢q,= Sq‘_, D,
v=1

(l=m+1,m+2, ---,q) of errors of choosing a higher order than neces-
sary. On the other hand, we shall have to keep p, as large as possible
within some allowable limit to maintain the sensitivity of the procedure
to non-zero autoregression coefficients. If we evaluate the loss, incurred
by adopting a higher order than necessary, by FPE, it would be more
natural to control the quantities

(6.1) Ql=é(1+N"(u—l+I))oip, (=m+1, m+2, ---,q),

rather than the probabilities ¢,. Obviously @, takes the largest value
among Q, and we decide to pay our attention only to this maximum
possible loss. We state the allowable limit of this maximum possible
loss relatively to the value of FPE for the order m, i.e., we require
Qn+1 to be less than or equal to p(14+N ~'m)s?, where p is a small posi-
tive quantity such as 0.1 and the like. To keep the sensitivity to a
possible non-zero a(l) it is necessary to choose p, as large as possible,
but this also contributes to @,,; with the corresponding amount of
(I+N-'l—m))d’p,. We introduce here the principle of equal harmful-
ness which states that these losses (1+N-'(l—m))’p, (=m+1, m+2,
-++,q) should all be equal to a positive quantity ys*. By this principle
our set of probabilities p, (=m+1, m+2, ---, q) is determined as fol-
lows :
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1) Define the allowable relative amount of loss p (<(14+N~'m)™).
2) Obtain the value y by the relation

(6.2) (g—m)r=1+N"'m)p .
3) p, is given by
(6.3) p=1+N"'l-m))"y (=m+1,m+2 ---,q).

When we assume that the partial serial correlations, a,(M)’s in the
formulation of (3.2), are distributed mutually independently and sym-
metrically around zero when the true order is less than M, the Anderson’s
procedure is realized by testing the partial serial correlation a,(M)
against zero successively for M=q,q—1, ---, m+1 and taking M, equal
"to the first and the largest M for which a,(M) is decided to be signifi-
cant. The level of significance 8, and the corresponding critical value
oy of each test is given by the relations

Bu=Prob {|ax(M)|>dx} ,
(6.5) By =Dy,

q

Bu=px 1] 1—5)" (M=q—-1,9-2, ---,m+1).

l=M+1

If we adopt the approximation that N|a,(M)|* is distributed as a chi-
square variable with d.f.1, 6, is very simply obtained by using the table
of chi-square or Gaussian distribution.

In the following discussion of numerical results we shall exclusively
adopt this chi-square approximation along with the constants p=0.1,
m=0 and g=L.

7. A practical version of the procedures

For practical applications of the three procedures we propose the
following modification. Given a set of data {X(n); n=1,2, ..., N} we

replace X, and C,.(l, m) in the foregoing description of the procedures
by X and C,(I—m), respectively, where by definition

(1.1) X:N“é X(n)
and
(7.2) Cull)=N "3 (X (n-+ k)~ X)(X(m)— %)

By this modification we lose nothing but the relation (4.4) in the pre-
ceding discussions. Above all, the result of discussions in Section 5 re-
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mains valid and we can expect that the practical usefulness of the
original procedures is not affected by this modification.

The modification introduces a great simplification into the compu-
tational procedure, especially when we take into account the fact [8, 9]
that the computations of (3.2) and (4.1) for G,(m) and S(M) can most
easily be carried out by using the recursive relations

Gy (M+1)=(S(M)) ™ (Cor M+1)— :2:1 ax(m)Coo(M+1—m)) ,
(7.3)  aya(m)=ay(M)—ay(M+1)ay(M+1—m) m=1,2,---,M,
S(M+1)=S(M)1—(x+(M+1))) ,
with the initial values
ay(m)=0,
S(0)=C.(0) .

Little difference has been observed between the results obtained by
the original and the present versions of the procedures in many appli-
cations to artificial time series and the whole numerical results in the
following section are obtained by using this practical version.

(7.4)

8. Numerical examples and discussions

Table 1 shows the results of applications of the three procedures,
minimum FPE, minimum (FPE)”* and an Anderson type described in
Section 6, with !N=100 and L=10, to ten artificial realizations of the
process

X(n)=0.3X(n—1)+0.2X(n—2)+0.1X(n—38)+¢(n) ,

where ¢(n)’s are mutually independently distributed uniformly over
[—3%,3]. It can be seen that all the three procedures are showing the
tendency of giving M, lower than the true order, except the three ex-
treme cases of the Anderson type.

Table 1. Frequency table of adopted order M, in ten applications of
the three procedures to the process
X(n)=0.3X(n—1)+0.2X(n—2)+0.1X(n—3)+¢e(n). N=100 and L=10.

\\Adopted order M,
\\

0 1 2 3 10
Type of pm

Anderson with p=0.1 2 4 1 3

Minimum (FPE)V+ 2 3 5

Minimum (FPE) 2 6 2
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The experiment has exposed the weakness of the Anderson type pro-
cedure that, in its present definition, it is not fully protected against
adopting extraordinarily large values of M,. The procedure is also with
the difficulty in selecting the value of p.

The present results suggest that in spite of its inconsistency, dis-
cussed in Section 5, as an estimate of the order of a finite order auto-
regressive process, M; of the minimum FPE procedure will not be giving
too large values in practical applications. This point is further backed
up by the next example.

We have applied the three procedures with N=100 and L=20 to
the process X(n)=e(n)—0.8¢(n—1), where ¢(n) is as in the former ex-
ample. In this case X(n) is actually an autoregressive process of infinite
order. The orders which gave the estimates @, with the minimum of
the one-step prediction error variances in each experiment were identified
by numerical computations and are given in the column denoted by
“optimum ” in Table 2, along with the orderes adopted by the three
procedures. The table clearly shows the general tendency of the three
procedures giving lower orders than optimum. The differences of the
one-step prediction error variances of the optimum predictors and those
obtained by the minimum FPE procedure were all relatively small and
were at most of the order of 109 of the variance of &(n). This shows
that for the minimum FPE procedure the present tendency of taking
the lower values of orders is not so harmful for prediction.

Table 2. Orders adopted by the three procedures for X(n)=e(n)—0.8¢(n—1) in nine
experiments and the corresponding orders which gave the predictors with
the minimum one-step prediction error variance in each experiment.

N=100 and L=20.

Type of procedure .
. Angerson Minimum Minimum Optimum

Number\ p=0.1 (FPE)/4 FPE

of the experiment
1 3 3 5 7
2 2 2 6 8
3 3 3 3 6
4 3 3 3 6
5 12 3 3 9
6 1 2 3 6
7 2 2 2 7
8 2 3 4 8
9 1 7 8 6

The results of Tables 1 and 2 both show the wide variability of M,
of the present Anderson type procedure. Also they show that the tenden-
cy of giving lower estimates of orders than optimum is weakest in the
minimum FPE procedure. Furthermore, there is no arbitrariness in the
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definition of the minimum FPE procedure, such as p in the Anderson’s
and a in the minimum (FPE)®, except the only one constant L which
was common to all the three procedures. These observations suggest
that the original minimum FPE procedure would be the most useful for
practical applications.

To give a feeling of the behavior of (FPE)M), one example is de-
picted in Fig. 1. The figure illustrates the behavior of (RFPE)}M)=
(FPE)XM )((FPE)(0))! for one realization of X(n)=0.8X(n—1)+¢(n) with
N=100 and L=20. ¢(n) was the same as in the former examples. In
practical applications of the minimum FPE procedure to real data,
(RFPE)YM) (M=M,, M,+1, ---, L) has shown a similar behavior to that
of Fig. 1 for M=1,2, ..., L.

(RFPE) (M)

X(n)=0.8X(n—1) +e (n)
N=100, L=20

0.5-| se000®®

0 10 20
M—

Fig. 1. Behavior of (RFPE}M)=(FPEX M)(FPE)0))! for a realization of
X(n)=0.8X(n—1)+e(n).

From the experiences of application to real and artificial data it
seems that to set L nearly equal to 0.1N would be a reasonable choice
for ordinary size of N. Some numerical results of application of the
minimum FPE procedure to real data are to be seen elsewhere [3, 6].
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