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Summary

Stein [2] has shown that the maximum likelihood estimator (MLE)
of the regression coefficients is admissible in unvariate regression with
one predictor or with two predictors and known means. In a similar
way it is shown in the present note that the MLE is admissible when
there are two predictands and one predictor and the means are known.

1. Introduction and statement of theorem

Let Z,, ---, Zy be independent identically distributed random vari-
ables, where, for k=1, .-., N, Z.=(Y/!, X.), Y. is a vector of two com-
ponents, X, is a scalar, and Z, is normally distributed with mean

=(Hr
# <ﬂx)
and covariance matrix

s= (3 ).

T \2xr 2y
The problem is to estimate the parameters of the régression Junction
p(@)=E[Y,| X,=t]=a+7e,
where 7 is a column vector of two components given by
7=2¢x/2x,
a=py—7px .
The 2X2 conditional covariance matrix of Y, given X, is
ZY'XzzYY—ZYXEXY/‘ZX .
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(We assume Xy ., is nonsingular; this holds if I is nonsingular.) Thus
the conditional distribution of Y,, given X,=z, is Ta+7x, Zy.x).

When the mean p is known (admittedly an artificial situation), the
problem is reduced to estimating y only. The result to be proved is the

THEOREM. If N5, the MLE 1s admissible for the problem of esti-
mating y when the mean p is known and the loss function is

Lz, f‘):tl‘ 2;}11'(?_7)21(?_7)’ .
The choice of this type of loss function is explained in [2].
Define the statistics ¥=31Yy/N and X=3 X,/N, T=31(Y,—py)
k=1 k=1 k=1

N

N
.(Yk_‘[“Y)’! Uzz (Xk_#x)(Yk_ﬂY)’! al’ld Vzg (Xk_ﬂx)2. Then the

k=1
MLE’s are: for 7,
g=U'lV,
for ¥,

=¥l v)

and for X,.y, Sy.x/N, where
Sy.x=T-U'U/V=T—-Vygg' .

2. Proof of the theorem

The proof is accomplished by applying a general result due to Stein
(see Lemma 2 of [2]), which we restate here:

LEMMA. Let B be the o-algebra of all Borel subsets of the two-di-
mensional real coordinate space X and G a o-algebra of subsets of a set
Y. Let p be Lebesgue measure on B and v a probability measure on G.
Let f be a non-negative-valued BG measurable function on X XY such that

(1) | f@wdo=1, joraty,

(2) Sxif(x,y)dx':'o; 7:=1,2, fOT a'u yr
and

(3) | )] | @iz v <oo,

Jor some ¢>0, where de=du(x). Then, if we observe (X,Y) distributed
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so that, for some unkmown &, (X—¢&,Y) has probability demsity f(x,y)
with respect to p v, the estimator X is an admissible estimator of & with
loss function

(4) E—eYAE-¢®),

for any constant positive semidefinite matrix A.

ProoF OoF THE THEOREM. We remark that (2) states E[X—£[Y]=0
and (3) states

(5) E{EN(X—8'(X—=8)*|Y]} <eo.

Since py and gy are known, the sufficient statistic is the triplet
(9,V,Sr.x). To apply the lemma, take X=g, &£=y, and Y=(V, Sr.x);
take A=23,37!y so that (4) becomes L(Z, 7).

Given V, g is Jl(y, V™'Zy.x); the statistic V is 23Xy, Sy.r has the
Wishart distribution 9/(3y.x, N—1) ([1], p. 158) and is independent of g
and V. The density f(x,y) is the conditional density of X—¢=g—7
given (V, Sy.x)=y. Since Sy.r is independent of g and V, this is the
conditional density of g—7 given V, which is JI(0,V~'2y.x). First sup-
pose that ¥,., and X, are known. Then f(x,y) and v are specified and
the conditions (1) and (2) are met.

It remains to show that condition (5) is satisfied. Define U*=U-—
Vr'. Then we have (X—¢&)=¢ —¢ =V 'U—¢'=V~'U*, and (X—¢£)(X—¢§)
=U*U¥ V2

The finiteness of the left-hand side of (5) does not depend upon the
values of Y,.» and Xy; we assume Xy.y=I and Yy;=1. Then the con-
ditional distribution of U*’' given V is J1(0,VI) and that of U¥/V'” is
J1(0, I), so that the conditional distribution of W=U*U*/V is %;. Since
this conditional distribution does not depend upon V, it is also the un-
conditional distribution. The statistic U*U*[V*=W/V. We have, for
any fixed ¢>0,

EZ[(W/V)1+E I V] =E2(W1+e lV)/V2+2£
— EZ(W1+6)/V2+2E
=E2[(x§)‘+5]/V“25
éMV—2—Ze

where 0< E}[(5})'*1<M< 0. Thus

E{E(UU*VY)* |V} SME(V %)
= ME[(%)"]

o

____MS wN/Z—l—Z—ZS e—a’/idx ,
0
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which is finite for N/2—1—2—2¢>—1, that is, for N=5, if e<1/4.
This proves that the MLE is admissible if ¥, and 3., are known; con-
sequently, it is also admissible when they are unknown. (An estimator
admissible over each set of a partition of the parameter space is admis-
sible.)

Strictly speaking, we have demonstrated only the admissibility of
the MLE in the class of estimators which depend on the sufficient sta-
tistic, for we have taken (g, (V, S)) as the basic observation. However,
by the convexity of the loss function this class is complete, so the MLE
is admissible in the class of all estimators.
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