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1. Summary

The null distribution of the Hotelling-Lawley generalized T statistic
has been shown [4] to satisfy a homogeneous linear differential equation
(d.e.). The latter has been used to tabulate some exact percentage points
of T? by analytic continuation of Constantine’s [3] series, and a table
for the 5-variate case is presented in this paper. The Ito-Siotani [9],
[16] asymptotic expansions for the distribution function and percentage
points of T¢ are also extended.

2. The differential equation
The T? statistic of Hotelling [8] and Lawley [11] is defined by
(2.1) Toz:nz tl‘ SIS{l=n2T,

say, where S, and S; are independent m Xm Wishart matrices based on
n, and n, degrees of freedom, respectively, estimating the same popula-
tion covariance matrix. In the general case when S, has a non-central
Wishart distribution, Constantine [3] has given a power-series represen-
tation of the density function f(T) of T, which is valid for 0 <T<1.
The exact null distribution when m=2 was found by Hotelling [8] in
terms of the Gaussian hypergeometric function. This result was extend-
ed by the present author [4], who showed that f(T) satisfies a d.e. of
fuchsian type of order m, with regular singularities at T=0, —1, -2,
..., —m and o. Constantine’s series reduces in the null case to the
relevant solution of this d.e. in the unit circle about T=0.

When n,, n,=m, the d.e. for f(T) is equivalent to a first order
matrix d.e. ([4], Section 3):
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2.2) diag {T, T+1, - - -, T+m}dM/dT=CM,

where

(2.3) - M(T)=M(T), - -+, Mu(T))
is an (m+1)-vector with

2.9 M(T)=Sf(T),

(2.5) jﬁ (T+7)M(T)=0.

The constant (m+1)X(m+1) matrix C has the form

—aOyIQO,Or O, ...... ’0 —_
71y A1y ﬂl; 0) """ 10
0
(2.6) c=| "
Tm—h X1y .Bm-l
— Q. ¢« « o« . . 0, Tmy Om —
= {(.80’ ABI’ MY .Bm—l)! (aOJ Ct am)l (TI) Tty Tm)} ’
say, where

a;=[(m—2i)n,—iny,+(2i*—mi—i1—2)]/2,
2.7 B.=(+1)(n,+m,—1)/2,
ri=—(m—i+1)(n,—1+1)/2.

Since (2.2) may be rewritten as
(2.8) dM/dT= { 3 (T+7)" V,}M,

where V, is obtained by replacing all elements of C by zeros except
those in the rth row (r=0,1, --., m), it follows from the general theory
of such systems ([2], Chapter 4) that the d.e. has regular singularities
at T=0, —1, ..., —m and oco. The (m+1) linearly independent solutions
of (2.2) in the unit circle about T'=0 correspond to the latent roots of
Vi, i.e. zero (with multiplicity m) and

(2.9) ao=mn1/2—1 .

In virtue of Constantine’s result [3], the relevant solution is given
by the latter root:
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M(T)=k(m; n,, n) T 3 W, TV,
(2.10) j=o

(W;=(Wy, -- < Way)s We=1, |T|<1).

Here the M,(T) component is the null case of Constantine’s series,
and ([3], equation (2)),

(2.11) k(m ; ny, M) =n((ny+15)[2)[T (mn,/2)1‘ w(12/2)
where
(2.12) I(2) =n™m=b% ’jjo I(z—i/2).

The following recurrence relations for the W, are obtained from
(2.2):

Wiw=04, (Kronecker’s delta) ;

i(j+mnl/2_1)Wij=TtW£—l,j+[ai_(j+mn1/2_2)]m,j—l
+.BtWt+l,j—l! (i=19 e, M, j=1)2y "');

jWOj =(n, +nz)le/2 .

(2.13)

The d.e. (2.2) may be used to carry out an analytic continuation of
the solution (2.10) along the positive T axis, noting that at any “ordinary”
point T*>0 it is sufficient to know M(T*)=(M\(T*), - - -, M.(T*))’ in or-
der to construct the solution in the neighbourhood of T*. A computer
program has been written which effects this analytic continuation, and
calculates percentage points of Tj/n, by the Newton-Raphson method.
Table 1 presents results for m=>5. Brief tables for m=38 and 4 will be
reported elsewhere [5]. For m;<m, the distribution of T is obtained by
the transformations [3]

(2.14) n—-m, m-n, 'nz"”n1+n2_m ’

so that Table 1 may also be used for n,=5, and values of m between
6 and 60.

As a check on the accuracy of the program, the range of T was
mapped onto the unit interval (0,1) by Y=T/(T+1), and the percentage
points recalculated using the transformed d.e.. For m=23,4 and 5,
n,<60 and m,=m, the results agreed to five significant figures, except
for small n, and large n,. However, even for such relatively extreme
values of the parameters as m=5, n,=40, n,=20, the values arrived at
(a) by analytic continuation of Constantine’s series and (b) after trans-
formation onto (0, 1), were
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Table 1. Upper percentage points for

m\m 5 6 8 10
5% 5 81.991 + 83.352 + 85.093 + 86.160 +
6 3.0093+ 3.0142+ 3.0204+ 3.0241+
7 93.762 93.042 92.102 91.515
8 51.339 50.646 49.739 49.170
10 27.667 27.115 26.387 25.927
12 20.169 19.701 19.079 18.683
14 16.643 16.224 15.666 15.309
16 14.624 14.239 13.722 13.389
18 13.32 12.963 12.476 12.161
20 12.424 12.078 11.612 11.310
25 11.046 10.728 10.297 10.016
30 10.270 9.9689 9.5592 9.2907
35 9.7739 9.4836 9.0879 8.8277
40 9.4292 9.1469 8.7613 8.5070
50 8.9825 8.7107 8.3385 8.0921
60 8.7057 8.4406 8.0769 7.8355
70 8.5174 8.2570 7.8991 7.6612
80 8.3811 8.1241 7.7705 7.5351
100 8.1969 7.9446 7.5969 7.3649
200 7.8505 7.6070 7.2706 7.0451
. 7.5305 7.2955 6.9698 6.7505
1% 5 20.495 * 20.834 * 21.267 * 21.53 *
6 15.014 + 15.019 + 15.025 + 15.029 +
7 2.7354+ 2.7045+ 2.6646+ 2.6400+
8 1.1498+ 1.1276+ 1.0989+ 1.0811+
10 48.048 46.670 44.877 43.758
12 31.108 30.065 28.701 27.846
14 24.016 23.145 22.001 21.279
16 20,240 19.472 18.459 17.817
18 17.929 17.228 16.302 15.713
20 16.380 15.727 14.862 14.310
25 14.107 13.529 12.759 12.265
30 12.880 12.345 11.629 11.167
35 12.115 11.607 10.926 10,486
40 11.593 11.105 10,448 10.022
50 10.928 10.465 9.8408 9.4336
60 10.523 10.076 9.4712 9.0758
70 10.251 9.8142 9.2229 8.8354
80 10.055 9.6261 9.0446 8.6629
100 9.7929 9.3742 8.8058 8.4319
200 9.3055 8.9065 8.3629 8.0036
. 8.8628 8.4820 7.9613 7.6154

+ Multiply entry by 100. * Multiply entry by 104

(a) (b)
Upper 5% point 10.25171 10.25169
Upper 19 point 12.43142 12.43134.

The entries given in Table 1 are 10.252 and 12.431, respectively. It
may be noted that the null distribution of Pillai’s trace [13]

(2.15) V=tr 8(S;+8S:)™"

satisfies a d.e. obtained from (2.2) by the transformations
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Hotelling’s generalized Tv%/n;, (m=5)

12 15 20 25 40 60
86.88 + — — — — -
3.0266+ 3.0291+ 3.032 + — — -
91.113 90.705 90.29 90.04 — —
48.780 48.382 47.973 47.723 47.35 —
25.610 25,284 24.947 24,740 24.422 —
18.409 18.124 17.830 17.647 17.365 17.20
15.059 14.800 14.530 14.361 14.100 13.95
13.157 12.914 12.659 12.499 12.250 12.105
11.939 11.708 11.463 11.310 11.068 10.928
11.097 10.874 10.637 10.488 10.252 10.113
9.8168 9.6061 9.3814 9.2386 9.0102 8.8745
9.0995 8.8964 8.6785 8.5389 8.3141 8.1790
8.6419 8.4437 8.2301 8.0926 7.8693 7.7339
8.3250 8.1303 7.9195 7.7833 7.5607 7.4247
7.9150 7.7248 7.5177 7.3829 7.1605 7.0229
7.6615 7.4741 7.2692 7.1351 6.9124 6.7730
7.4894 7.3039 7.1004 6.9667 6.7434 6.6024
7.3648 7.1807 6.9782 6.8448 6.6208 6.4785
7.1968 7.0145 6.8133 6.6801 6.4550 6.3103
6.8811 6.7023 6.5032 6.3702 6.1416 5.9908
6.5902 6.4144 6.2171 6.0838 5.8499 5.6899
15.033 + 15.03 + 15.06 + — — —
2.6232+ 2.6064+ 2.590 + 2.579 + — —
1.0689+ 1.0567+ 1.0440+ 1.0364+ — —_
42,992 42.210 41.408 40.921 — —
27.257 26.653 26.031 25.648 25.06 24.71
20.781 20.268 19.736 19.408 18.90 18.61
17.373 16.913 16.435 16.138 15.678 15.412
15.304 14.878 14.435 14.159 13.727 13.478
13.925 13.525 13.105 12.843 12.431 12.192
11.918 11.555 11.172 10.930 10.547 10.322
10.842 10.500 10.136 9.9059 9.5378 9.3188
10.174 9.8453 9.4944 9.2706 8.9106 8.6946
9.7204 9.4006 9.0581 8.8387 8.4838 8.2691
9.1441 8.8361 8.5041 8.2901 7.9404 7.7261
8.7938 8.4930 8.1674 7.9563 7.6090 7.3940
8.5586 8.2626 7.9411 7.7319 7.3858 7.1697
8.3899 8.0973 7.7787 7.5708 7.2251 7.0078
8.1638 7.8758 7.5611 7.3547 7.0093 6.7897
7.7448 7.4652 7.1572 6.9532 6.6062 6.3798
7.3650 7.0929 6.7903 6.5878 6.2361 5.9984
T—-V,
(2.16)
Ny—>Mm—n—ns+1,
m and n, remaining unchanged. This d.e. therefore has regular singu-

larities at 0,1,2, ---, m and oo, i.e. within the range (0, m) of V. How-
ever, the program written for the present paper may with trivial modi-
fications be used to calculate accurate percentage points of V in the
ranges (0,1) and (m—1,m), and some investigation has been made of
approximations to its distribution [6].
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3. Extension of the lto-Siotani asymptotic expansions

As m,— oo, the null distribution of 77 approaches the chi-squared
distribution on mm, degrees of freedom, and we may show that its cu-
mulant generating function

3.1) K(6)=log E exp (16T7) (6 real)

may be developed in an asymptotic expansion for large m, of the type
considered by Box [1]:

(3.2) K(8)—(mn,/2) log (1_21-0)@ o [(1—2i8)"—1].

The o, are functions of m, n, and n,, and will be given below to
order n;*. Writing ¢t =T¢, introduce the vector of functions

3.3) N(@)=(N(2), - - -, Nau(®t))
=mn, diag {1, ny, - - -, nF} M(t/n,) ,

Ny(t) being the density function of ¢. Then N may be shown [4] to
satisfy the d.e.:

(8.4) diag (n', ny't+1, - - -, ny't+m)dN/dt=[d,+n; 4, +n;*4,)N,
where
4,={©0, ---,0),(0, —1/2, =1, - -+, —=m[2), (1, - - -, )},
(3.5) 4,={1/2,1, ---, m2), (@, - -, &), (0, - -+, 0)},
4,={(Bo, -+, Bn-t) (0, -+, 0),(0, -+, 0)}
and
a,=[(m—2i)mn,+2¢* —mi—1—2]/2,
Bi=(i+1)(n,—1)/2.

If we take the Fourier transform of N,

(3.6)

3.7 co)= S: e N(t)dt=(Cy©8), - -+, Ca(9)), (0 real),

so that Cy(6) is the characteristic function of ¢, then C clearly satisfies
a first-order matrix d.e. with respect to i which we omit.
Let

Q(8)=log [(1—2i8)""Cy(6)]=(mn,/2) log (1—2i6)+ K(6) ,

3.8)
RJ(0)=CI(0)/CO(0) ’ (j=17 ] m) ’
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and assume expansions of the form

QO ~3 wl(1—2i6)"—1]
(8.9) B
‘ Rj(o) ~,§ e!,r[(l—zw)—r_ll ’ (j=11 MR m) .

The following recurrence relations may be obtained :
(8.10) 2rv,=2(r—1)o,_,+mnd,,+(1 +nr'n)éy,
where the &,, are given recursively by:

Eo,r=fr,o=50,r ’

3¢5, =2r; &y ra— [+ 2(r—1)1;,,
+ [nz_l(j+1)2?@;2.311514»1,1--1+n;1[mn1+2("'_‘2)]fj,r—z

r—2
+2n2_1 :Z=:}l swx(éj,r—:—z—sj,f—:—l) y
(j:]-r e, My 1':1,21 "'),

(3.11)

A =j(m+2n,—25+1), (Gj=1,---,m).
The first eight o, are necessary to give the expansion (8.2) to order n;*:
= —mnif2n, ,
o, =(1/dmn[n;(m+n,+1)+n;*n(m+2n,+1)],

w3 = — (1/6)mn1 {(n{z + ’n{"nl) [m2 + 3m(2n1 + 1)
+(4nl+6n,+4)]+n:’ni},

o= (1/8)ymn, {n;*[2m*+5m(n,+ 1)+ (2ni+5n,+5)]
+ 07 [mP4-2m*(Tn,+3)+m(84ni+39n,+21)
+ (15m2 4 34n? +47n, +20)]
+nytn[mP+6m*@2n,+1)+m(29n} +34n, +21)
+ (14n}+29n7+42n,+-20)]} ,

ws= —(1/10)ymn, {5nz*[m*+m*(Tn,+5)+2m(5ni+9In,+7)
+ (3134107} + 191, +12)]+ny ‘[ m* + 5m*(5n, + 2)
(3.12) ¢ +5mA(26m2 +27Tn, +18) +10m(18n: 4 3503+ 42n, +16)
+4(14ni+ 451141000} + 95n,+37)1+ 0(n; )} ,
ws=(1/12)ymmn, {n;*[5m* 4 22m*(n, +1) 4 2m(11n} +27n, +26)
+ (513 +22n2 +52n,+41)]+n; [9m' + 15m*(8n,+ 5)
+m?*(388n2+585n, +397) +3m(122n} 4 332n} + 531n, +289)
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+(84ni+366m]+1048n;4-1350n, +732)]+0(n; *)} ,

o;= —(1/2ymn,[3m* +m*(27Tn,+22) +m*(62n] +122n,+100)
+m(44n}+154n; +299n,+199)
+4(2n}+11ni+38ni+60n,+39)]/ni+ 0(n;°) ,

wy=(1/16)mn[14m*+93m*(n,+1)+m*(164n} 4 398n,+374)
+m(93n}+ 398n; + 899n,+ 690)
\ +(14mi 49313+ 374n}+690n,+ 509)}/n;+ 0(n;®) .

For r=9, the o, do not exceed 0(n;®); apparently, o,=0(n;'"/*)) where
[ ] denotes the integer part. The first six w, have been given to 0(n;*)
by Muirhead [12], using partial d.e.’s for Constantine’s hypergeometric
functions of matrix argument. Exponentiation of (3.2), followed by in-
version of the resulting linear combination of chi-squared characteristic
functions, in principle yields an extension of Ito’s and Siotani’s expan-
sions of the cumulative distribution function of T? in the null case.
Their formula for T? percentiles in terms of percentage points, u say,
of xn.., may be extended using a general inversion of Box-type expan-
sions [7] and the above w,. To order m;*:

(8.13) T?~u+(1/2n)[u(m—n+1)+ul(m+n,+1)/(mn,+2)]
+(1/24n) {u[Tm?—12m(n,— 1)+ (Tni—12n,+1)]
+uw[18m? +24m —11n}+ 7] /(mn,+2)
+ul[4m*n,+2m*(8ni+3n,+10) +2m(2n}+3ni+17n, +-18)
+4(5ni+9n, +2)]/(mn, +2) (mn, +4)
+6ul(m —1) (m+2) (n,—1) (n,+2)/(mn,+2)"(mn, +4) (mn, +6)}
+(1/48n3) {8u[8m! — Tm¥(n,— 1)+ m(Tn} —12n,+1)
—(3n}—Tni+n,+8)]+u*[23m* —m*(19n,—59)
—m(18n?+86m, —29)+(17Tn}—13ni—13n,—T)]/(mn,+2)
+ 2w [Tm*n, +2m*(2ni+8n,+17) —m*(2n} — 9ni—29n,—88)
—m(5mi 4203+ 18n2 — 46n, — 46) — (26n1 +20n] —22n, 48]/
(mny+2)(mn,+4) +2u[m*ni+2m'n,(Tni -+ Tn,—6)
—m¥(4ni—21ni—83ni+4)+m*(ni—4ni—Tni+T70n}+196n,116)
+4m(6ni+4n2+5Tn,+25)+ 4(1Tni+22n] —11n,+20)]/
(mn,+2)(mn,+4) (mn,+6) —4u’(m—1)(m+2)(n,—1) (n,+2)
X [mn,+m(ni+Tn,—28) — 4(Tn,+4)][(mny+2)(mn, +4)
X (mn,+6) (mn,+8)+8u’(m —1)(m+2) (n,—1)(n,+2)
X [m*n,+m(ni+4n,—10)— (10n,+4)]/(mn,+2) (mn,+4)
X (mn,+6) (mn,+8) (mn,+10)} +0(n;*) .
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We note also that, corresponding to (2.16), the cumulant generating
function of Pillai’s #,V may be expanded in the form (8.2), with co-
efficients o, , related to those for T? by

(3.14) (—n) o, ,=mn(n,—m—1)[2r
+:Z:;1 <;‘:%>(m—n1_n2+1)’(nl—m_ 1)'_'(0;" ,

where o is obtained by replacing n, by m—n,—n,+1 in @,. The o,,
thus specified agree with those given by Muirhead [12] to order n;®.
A percentile expansion for n,V corresponding to (3.13) may also be de-
rived [6].

4. Discussion of approximations

Another approach to approximating the distribution of 7 has been
taken by Pillai and his associates ([14], [15], [17]). They have given for-
mulas for the moment-ratios g, and B, required for fitting a Pearson
curve. The rth central moment g, of T; exists if r<(ny,—m+1)/2,
([3], Section 5), so that g, and B, are defined if n,>m-+7, independently
of the value of n,. In the present notation,

' = ) = B(M—m—38) (n;—m) (n,+m—1)"(2n, +n, —m—1)*
WD B=plp= mn,(n,—1) (n,—m—5)(n,—m~+1)(n+n,—m—1)

Also, writing
4.2) c=my—m—1,

the following reduced form of B, has been derived by the present author
from the recurrence relations for moments given in [4], Section 7.

3(c—2)(c+1)A

4.3) B=plpi= mnl(nz_1)(0_6)(0_4)(c_]_)(c-{—2)(c—|-3)(6+’nl) ’

where
4.4) A=n(c+mny)[m(n,;—1)(c*—5c*+ T8¢ —T2)+4c*(5¢—6)]
+4c[m(n,—1) (5c—6)+c(c*—c+2)] .

The mean and variance of T¢ are also required in fitting a Pearson
curve:
p=mnmy/(n,—m—1),
(4.5)
ta=2mnmy(ny—1) (ny+1,—m—1)/(ny—m—3) (n,—m—1)(n,—m) .

It may be noted that the transformation (2.16) converts the above
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quantities into those required for fitting a Pearson curve to V.

The extended tables of the Pearson curve given in [10] have been
used to compute the Pillai approximation to T?, and its accuracy has
been compared with that of the Ito-Siotani approximation. The results
will be presented in diagram form in [5]. Briefly, the Pillai method
gives remarkably accurate percentage points for m <5 provided n, and
n, are not both small. On the other hand, the accuracy of the Ito-
Siotani approximations (3.13) falls away as m, increases. However, the
latter has the advantage of being a direct formula, and its accuracy is
considerably improved by the addition of the n;® term. For m=<4, n,<
30, formula (3.13) achieves 3-decimal place accuracy for the 19, points
of T}/n, for smaller values of 7, than Pillai’s approximation.
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