ON MEASURES OF ASSOCIATION AND A RELATED PROBLEM #### TAKEMI YANAGIMOTO (Received Feb. 17, 1969; revised Aug. 20, 1969) Two measures of association $M_1(F)$ and $M_2(F)$ are discussed, which are defined by the expectations of certain rank statistics, T_1 and T_2 , respectively. W. Hoeffding [1] has introduced the measure $M_1(F)$ and some of its properties. $M_i(F)$, i=1,2, have desirable properties as the measures of association, for example, $M_i(F)=0$, iff F(x,y) is independent, and $M_i(\Phi_\rho)$ is a monotone increasing function of $|\rho|$, when Φ_ρ is the d.f. of two-dimensional normal distribution with correlation coefficient ρ . In Section 2 precise properties are obtained under mild conditions. In Section 3, using these measures, we give a complete result on a relation between equiprobable rankings and independence, which is an improvement of a result by Hoeffding [1]. ### 2. Notation and preliminaries Let (X, Y) be a bivariate population with the distribution function (d.f.) F(x, y) and its marginal d.f.'s $F_1(x)$ and $F_2(y)$. In what follows F(x, y) is assumed to be continuous. Let $H_F(u, v)$ be $$H_F(u, v) = F(F_1^{-1}(u), F_2^{-1}(v))$$, where $F_1^{-1}(u)$ and $F_2^{-1}(v)$ are the *u*th and *v*th quantiles of $F_1(x)$ and $F_2(y)$, respectively. The marginal d.f.'s of $H_F(u, v)$ are uniform distribution, U(0, 1). Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a sample of size n from (X, Y). Let $$(x_1, x_2, x_3) = C(x_1 - x_2) - C(x_1 - x_3)$$, where C(u)=1 for $u\geq 0$, and =0 for u<0. Let $$\phi(x_1, y_1; \dots; x_5, y_5) = (1/4)\phi(x_1, x_2, x_3)\phi(x_1, x_4, x_5)$$ $$\cdot \phi(y_1, y_2, y_3)\phi(y_1, y_4, y_5),$$ and $$\varphi(x_1, y_1; \dots; x_6, y_6) = (1/4) \varphi(x_1, x_8, x_4) \varphi(x_1, x_5, x_6) \\ \cdot \varphi(y_2, y_3, y_4) \varphi(y_2, y_5, y_6).$$ Then T_1 and T_2 are defined by U statistics with their kernels ϕ and φ , respectively. $M_1(F)$ and $M_2(F)$ are defined by $$M_1(F) = E(T_1) = \int (F(x, y) - F_1(x)F_2(y))^2 dF(x, y)$$ and $$M_2(F) = E(T_2) = \int (F(x, y) - F_1(x)F_2(y))^2 dF_1(x) dF_2(y)$$. For abbreviation of the subsequent sections we give two propositions. The proofs are omitted, since they are intuitively obvious. Proposition 2-(1) is seen in [2]. PROPOSITION 1. For i=1, 2, and each set C of R^{1} $$P_F(T_i \in C) = P_{H_F}(T_i \in C)$$. Hence for i=1, 2 $$M_i(F) = M_i(H_F)$$. PROPOSITION 2. (1) If F(x, y) is continuous, then $H_F(u, v)$ also is continuous. (2) If F(x, y) is absolutely continuous, then $H_F(u, v)$ also is absolutely continuous, and its probability density function $h_F(u, v)$ is given by $$h_{F}(u, v) = \begin{cases} \frac{f(F_{1}^{-1}(u), F_{2}^{-1}(v))}{f_{1}(F_{1}^{-1}(u))f_{2}(F_{2}^{-1}(v))}, & when \ f_{1}(F_{1}^{-1}(u))f_{2}(F_{2}^{-1}(v)) \neq 0; \\ arbitrary, & otherwise. \end{cases}$$ By Propositions 1 and 2, we may assume without loss of generality that both marginal distributions of F(x, y) are U(0, 1). ## 2. Properties of the measures of association PROPOSITION 3. When F(x, y) is absolutely continuous, $M_1(F) = 0$, iff $F(x, y) = F_1(x)F_2(y)$ for all $(x, y) \in R^2$ i.e. $F(x, y) \equiv F_1(x)F_2(y)$. PROOF. We prove only necessity. By Propositions 1 and 2-(2), we may assume that $F_1(x)$ and $F_2(y)$ are U(0, 1). Since F(x, y) is absolutely continuous, F(x, y) has Radon-Nikodym derivative f(x, y). Let $$E = \{(x, y) \mid f(x, y) > 0\}$$. Then $\mu(E) > 0$, where μ denotes the Lebesgue measure, and F(x, y) = xya.e. (μ) on E by our condition. Let $\{k_n\}$ and $\{k_n\}$ be two decreasing sequences with their limit 0. We define DF(x, y) by $$DF(x, y) = \lim_{n \to \infty} \frac{F(x+k_n, y+h_n) - F(x+k_n, y) - F(x, y+h_n) + F(x, y)}{k_n h_n}.$$ By using the theory of the derivatives of functions of a set (c.f. for example [3]), we see that there exists a null set \wedge such that on \mathbb{R}^2 - \wedge the above limit exists and DF(x, y) coincides with f(x, y). Let $$E_n = E_0[E + (0, k_n)]_0[E + (h_n, 0)]_0[E + (h_n, k_n)]$$ $n = 1, 2, \dots,$ where $[E+(x,y)]=[(x'+x,y'+y):(x',y')\in E]$, and let $$E' = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n$$. Then $\mu(E-E')=0$, and DF(x,y)=1 for $(x,y)\in E'-\wedge$. Hence f(x,y)=1on $E'-\wedge$, and therefore a.e. (μ) on E. This completes the proof. Remark 1. When we assume only continuity of F(x, y), the above proposition does not hold. In fact let A, B, C, D and E be defined as shown in Fig. 1 and let $$F_0(x, y) = \left\{egin{array}{ll} xy & ext{for } (x, y) \in A^{\cup}C^{\cup}D \ & & & & & & & \\ (1/2)x - (1/2 - y)^2 & & & & & & & \\ & & & & & & & & \\ for & (x, y) \in B & & & & & \\ y(1-y) & & & & & & & & \\ \end{array} ight.$$ $F_0(x, y)$ satisfies the conditions of distribution function, and both marginal distributions are U(0, 1). We have easily $M_1(F_0) = 0$, but $F_0(1/2, 1/4) \neq 1/8$. Fig. 1 PROPOSITION 4. $M_2(F)=0$, iff $F(x, y)=F_1(x)F_2(y)$ for all $(x, y) \in \mathbb{R}^2$ i.e., $F(x, y) \equiv F_1(x)F_2(y)$. PROPOSITION 5. (1) If $\{F_n(x, y); n=1, 2, \cdots\}$ converges to $F_i(x)$. $F_{2}(y)$, then $\lim_{n\to\infty} M_{1}(F_{n})=0$, and (2) $\{F_{n}(x,y); n=1,2,\cdots\}$ converges to $F_1(x)F_2(y)$, iff $\lim_{n\to\infty} M_2(F_n)=0$. One may conjecture that $M_1(\Phi_{\rho})$ and $M_2(\Phi_{\rho})$ are increasing functions of $|\rho|$, where $\Phi\rho(x,y)$ is the d.f. of two dimensional normal d.f. with the correlation coefficient ρ . We give this property more generally. For this purpose we need two partial orders of association introduced in [4]. DEFINITION 1. F(x, y) and G(x, y) have the common marginal d.f.'s $F_1(x)$ and $F_2(y)$. G(x, y) is said to have larger quadrant dependence than F(x, y), if G(x, y) > F(x, y) for all $(x, y) \in \mathbb{R}^2$, and we write G(x, y) > F(x, y) (Q.D.). DEFINITION 2. F(x, y) and G(x, y) have the common marginal distribution functions. F(y|x) and G(y|x) are conditional d.f.'s of F(x, y) and G(x, y) given X=x. G(x, y) is said to have larger regression dependence than F(x, y), if for x'>x, $F^{-1}(u|x')\geq F^{-1}(v|x)$ implies $G^{-1}(u|x')\geq G^{-1}(v|x)$. And we write G(x, y)>F(x, y) (R.D). In [4], we have seen that G(x, y) > F(x, y) (Q.D.), if G(x, y) > F(x, y) (R.D.), and that for $\rho' > \rho$, $\Phi \rho'(x, y) > \Phi \rho(x, y)$ (R.D.). PROPOSITION 6. If either of the following properties is satisfied, then $M_1(G) \ge M_1(F)$, where the equality is attained, iff F(x, y) = G(x, y), - (i) G(x, y) > F(x, y) (R.D.), and $F(x, y) > F_1(x)F_2(y)$ (R.D.), - (ii) G(x, y) < F(x, y) (R.D.), and $F(x, y) < F_1(x)F_2(y)$ (R.D.). PROOF. We prove only in the case of (i). $$\begin{split} M_1(F) &= \int (F(x, y) - F_1(x) F_2(y))^2 dF(x, y) \\ &= \int (F(x, y) - F_1(x) F_2(y))^2 dF(y \mid x) dF_1(x) \\ &= \int [F(x, F^{-1}(u \mid x)) - F_1(x) F_2(F^{-1}(u \mid x))]^2 du dF_1(x) \; . \end{split}$$ By our condition, we get for any x and u $$G(x, G^{-1}(u \mid x)) \ge F(x, F^{-1}(u \mid x))$$. and that $$1-G_1(x)-G_2(G^{-1}(u \mid x))+G(x, G^{-1}(u \mid x))$$ $$\geq 1-F_1(x)-F_2(F^{-1}(u \mid x))+F(x, F^{-1}(u \mid x)).$$ Hence for any x and u $$G(x, G^{-1}(u \mid x)) - G_1(x)G_2(G^{-1}(u \mid x))$$ $$\geq F(x, F^{-1}(u \mid x)) - F_1(x)F_2(F^{-1}(u \mid x)) \geq 0.$$ This completes the proof. PROPOSITION 7. If either of the two following properties is satisfied, then $M_2(G) \ge M_2(F)$, where the equality is attained, iff $G(x, y) \equiv F(x, y)$, - (i) G(x, y) > F(x, y) (Q.D.), and $F(x, y) > F_1(x)F_2(y)$ (Q.D.), - (ii) G(x, y) < F(x, y) (Q.D.), and $F(x, y) < F_1(x)F_2(y)$ (Q.D.). Remark 2. We can not replace the condition of Proposition 6 by that of Proposition 7. In fact let $$F_{\alpha}(x, y) = (1-\alpha)F_{0}(x, y) + \alpha xy$$ $0 \le \alpha \le 1, \ 0 \le x, \ y \le 1$, then $$F_0(x, y) > F_{1/2}(x, y) > F_1(x, y)$$ (Q.D.). On the other hand $$M_1(F_0) = M_1(F_1) = 0$$, but $M_1(F_{1/2}) > 0$. The following proposition (1) is given in [1], and we can prove (2) similarly to (1). PROPOSITION 8. (1) sup $M_1(F) = 1/30$, and (2) sup $M_2(F) = 1/90$, where the supremum is taken over all continuous d.f.'s. The supremum is attained, iff $H_F(u, v) \equiv \min\{u, v\}$, or $H_F(u, v) \equiv \max\{0, u+v-1\}$. # 3. Equiprobable rankings and independence The relation between equiprobable rankings and independence was considered by Hoeffding in [1]. In this section we give a more precise result. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a sample of size n from (X, Y) with the d.f. F(x, y) and let Π_n be the set of all permutations of $(1, 2, \dots, n)$. The statistic T is defined by $$T(X_1, Y_1; \dots; X_n, Y_n) = (r_1, \dots, r_n)^{-1} \cdot (s_1, \dots, s_n)$$ $(\in \Pi_n),$ when $X_{r_1} > \cdots > X_{r_n}$ and $Y_{s_1} > \cdots > Y_{s_n}$. The tie is neglected, since F(x,y) is assumed to be continuous. It is well-known that $P_F(T=(t_1,\cdots,t_n))=1/n!$ for all $(t_1,\cdots,t_n)\in \Pi_n$, if $F(x,y)\equiv F_1(x)F_2(y)$. Conversely, Hoeffding proved, in the appendix of his paper [1], that for $n\geq 5$ $P_F(T=(t_1,\cdots,t_n))=1/n!$ for all $(t_1,\cdots,t_n)\in \Pi_n$ implies $F(x,y)\equiv F_1(x)F_2(y)$, but not for n=2, when F(x,y) has the continuous derivative f(x,y). The following proposition gives a complete result under a more general condition such as the one that F(x,y) is continuous. PROPOSITION 9. For $n \ge 4$, $P_F(T=(t_1,\dots,t_n))=1/n!$ for all $(t_1,\dots,t_n) \in \Pi_n$ implies $F(x,y) \equiv F_1(x)F_2(y)$, but not for n=2 or 3. PROOF. Since $P_F(T=(t_1,\dots,t_{n+1}))=1/(n+1)!$ for all $(t_1,\dots,t_{n+1})\in$ Π_{n+1} implies that $P_F(T=(t_1,\dots,t_n))=1/n!$ for all $(t_1,\dots,t_n)\in\Pi_n$, we may only prove for n=4, and give a counter example for n=3. Case 1. n=4. It follows by definition that $$egin{aligned} M_1(F) + 2M_2(F) &= \int F^2(x,y) dF(x,y) \ &- 2 \int F(x,y) F_1(x) F_2(y) dF(x,y) \ &+ 2 \int F^2(x,y) dF_1(x) dF_2(y) - 1/9 \ . \end{aligned}$$ Let $(X_1, Y_1), \dots, (X_4, Y_4)$ be a random sample from (X, Y) with the d.f. F(x, y) and let $$S = C(X_4 - X_1)C(Y_4 - Y_1)C(X_4 - X_2)C(Y_4 - Y_2)$$ $$-2C(X_4 - X_1)C(Y_4 - Y_1)C(X_4 - X_2)C(Y_4 - Y_3)$$ $$+2C(X_4 - X_1)C(Y_3 - Y_1)C(X_4 - X_2)C(Y_3 - Y_2) - 1/9.$$ Then $E_F(S) = M_1(F) + 2M_2(F)$. Since S depends only on rank statistic, we get $E_F(S) = E_{F_1F_2}(S)$. Since $E_{F_1F_2}(S) = 0$, $M_1(F) + 2M_2(F) = 0$, which implies $F(x, y) \equiv F_1(x)F_2(y)$. Case 2. n=3. To show this part, we need the following lemma without proof. LEMMA. For all $(t_1, \dots, t_n) \in \Pi_n$ we have - (1) $H_F(u, v) \equiv H_F(v, u)$ implies $P_F(T = (t_1, \dots, t_n)) = P_F(T = (t_1, \dots, t_n)^{-1}),$ - (2) $H_F(u, v) \equiv u + v 1 + H_F(1 u, 1 v)$ implies $P_F(T = (t_1, \dots, t_n)) = P_F(T = (t_1, \dots, t_n))$, where $t_i + t'_{n-i+1} = n+1$ for $i = 1, 2, \dots, n$, and (3) $$H_F(u, v) \equiv u - H_F(u, 1-v)$$ implies $P_F(T=(t_1, \dots, t_n)) = P_F(T=(t_n, \dots, t_1)).$ Let $F_L(x, y)$ be the d.f. which is distributed uniformly on solid lines of Fig. 2 excluding x and y-axis, where L is a nonnegative number. Let us denote $P_{F_L}(T=(t_1,t_2,t_3))$ by $P_L(t_1,t_2,t_3)$. Since $F_L(x,y)$ satisfies three conditions of the lemma, $P_L(1,2,3)=P_L(3,2,1)$ and $P_L(2,1,3)=P_L(1,3,2)=P_L(3,1,2)=P_L(2,3,1)$. Hence, we have only to show that there exists L such that $$P_L(T=(1, 2, 3))=3!(2/3L^3+2L^2+2L+1/3)/4^2(1+L)^3$$. We denote the right-hand side by P(L). Then P(0)=1/8<1/6, $\lim_{L\to\infty}P(L)=1/4>1/6$ and P(L) is continuous on $(-1,\infty)$. This completes the proof. ## Acknowledgement The author wishes to thank the referee for his useful comments. THE INSTITUTE OF STATISTICAL MATHEMATICS #### REFERENCES - [1] Hoeffding, W. (1948). A nonparametric test of independence, Ann. Math. Statist., 19, 546-557. - [2] Konijn, H. S. (1959). Positive and negative dependence of two random variables, Sankhya, 21, 269-280. - [3] Saks, S. (1937). Theory of the Integral, Warszawa, - [4] Yanagimoto, T. and Okamoto, M. (1969). Partial orderings of permutations and monotonicity of a rank correlation statistic," Ann. Inst. Statist. Math., 21, 489-506.