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Two measures of association M,(F') and M,(F') are discussed, which
are defined by the expectations of certain rank statistics, 7, and T,
respectively. W. Hoeffding [1] has introduced the measure M(F') and
some of its properties. M,(F'), 1=1, 2, have desirable properties as the
measures of association, for example, M,(F)=0, iff F(x,y) is independ-
ent, and M,(®p) is a monotone increasing function of |[p|, when @p is
the d.f. of two-dimensional normal distribution with correlation coeffi-
cient p. In Section 2 precise properties are obtained under mild condi-
tions. In Section 3, using these measures, we give a complete result on
a relation between equiprobable rankings and independence, which is an
improvement of a result by Hoeffding [1].

2. Notation and preliminaries

Let (X,Y) be a bivariate population with the distribution function
(d.f.) F(x,y) and its marginal d.f.’s Fi(x) and Fy(y). In what follows
F(x,y) is assumed to be continuous. Let Hy(u, v) be

HF(u) 'U)=F(F1“(u), E—l(v)) ’

where F'(uw) and F;'(v) are the uth and wvth quantiles of Fi(x) and
Fy(y), respectively. The marginal d.f.’s of Hy(u,v) are uniform distri-
bution, U(0, 1).

Let (X, Y),- -, (X,, Y, be a sample of size n from (X,Y). Let

(1, @3, ®3)=Cla,—x2) — Cl2, —5)
where C(u)=1 for #=0, and =0 for ©<0. Let

Sy, Y130+ 5 L5, Ys) = (1/4)P(@1, Ta, T3)(T1, Tas xs)
< ¢y Y2 Y)Y W1y Yis Ys) »

and
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(@1, Y13+ 5 T, Ys) = (1/4)P(1, 5, @) P(1, L5, )
* (/)(yZy %, y4)¢(y27 yﬁ: ?Io) .
Then T, and T are defined by U statistics with their kernels ¢ and o,
respectively. M (F') and My(F') are defined by
M(F )=E(T1)=S (F(x, y)— Fi(x)Fy(y))'dF(z, y) ,
and
M(F)=E(T)= S (F(x, y)— Fi(x)Fy(y))d Fi(z)d Fy(y) .
For abbreviation of the subsequent sections we give two proposi-

tions. The proofs are omitted, since they are intuitively obvious. Pro-
position 2-(1) is seen in [2].

ProPOSITION 1. For i=1, 2, and each set C of R'
Py(T; € C)=Py(T:eC).
Hence for 1=1, 2
M(F)=M(H;) .

PROPOSITION 2. (1) If F(x,y) is continuous, then Hg(u,v) also is
continuous. ‘

(2) If F(z,y) is absolutely continuous, them Hg(u,v) also is abso-
lutely continuous, and its probability demsity function hg(u, v) is given by

S(F (W), Fr'i(w)) he (F (F .
b o= | FEAEy e SETIAETOZ0;
arbitrary, otherwise.

By Propositions 1 and 2, we may assume without loss of generality
that both marginal distributions of F(x, y) are U(0, 1).

2. Properties of the measures of association

PROPOSITION 3. When F(x,y) is absolutely continuous, M,(F')=0,
iff F(x,y)=F(x)Fyy) for all (z,y) € R i.e. F(z,y)=Fi(2)Fyy).

PrROOF. We prove only necessity. By Propositions 1 and 2-(2), we
may assume that Fi(x) and Fi(y) are U(0,1). Since F(z, y) is absolutely
continuous, F'(x,y) has Radon-Nikodym derivative f(x,y). Let

E={(, 9| f(x,y)>0}.
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Then p(E)>0, where p denotes the Lebesgue measure, and F(x, y)=zy
a.e. (#) on E by our condition. Let {k,} and {h,} be two decreasing
sequences with their limit 0. 'We define DF(x, y) by

DF(z, y)=lim L@+ Fn, zl+hn)—F(x+llz,.}.ly)—F(x, y+h)+F(@,y)

By using the theory of the derivatives of functions of a set (c.f. for
example [3]), we see that there exists a null set A such that on R’*-A
the above limit exists and DF'(x, y) coincides with f(z,y). Let

En=En[E+(Or kn)]n[E+(hns 0)]n[E+(hm kn)] n=19 2) ttty

where [E+(z, y)|=[(«'"+2, ¥'+y) : (¢, ¥') € E], and let
E=n UBE,.
N=1 n=N
Then w(E—E')=0, and DF(z,y)=1 for (x,y) € E'-A. Hence f(z,y)=1
on E'-A, and therefore a.e. (z) on E. This completes the proof.

Remark 1. When we assume only continuity of F'(z,y), the above
proposition does not hold. In fact let A,

B, C, D and E be defined as shown in Fig. 1
and let 1

xy for (x,y) € A'C'D A

] @2z—@/2—yy 3 D
Fl= )= for (z,4) ¢ B B
C " E
y(1—y) for (x,y) e E. -
0 1 1

Fy(x, y) satisfies the conditions of distribu-
tion function, and both marginal distribu-
tions are U(0,1). We have easily M(F,)=0, but Fy(1/2, 1/4)+#1/8.

Fig. 1

PROPOSITION 4. My(F)=0, iff F(z,y)=F(x)Fyy) for all (z,y) € R®
i.e., F(z,y)=F(x)F(y).

PROPOSITION 5. (1) If {F.(x,y);n=1,2,.---} converges to Fy(x)-
Fy(y), then lim M(F,)=0, and (2) {F.(x,y);n=1,2,---} converges to
Fi(x)Fyy), iff lim My(F;)=0.

One may conjecture that M(@p) and My(®p) are increasing functions

of |p|, where @p(z,y) is the d.f. of two dimensional normal d.f. with
the correlation coefficient p. We give this property more generally.
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For this purpose we need two partial orders of association introduced
in [4].

DEFINITION 1. F(z,y) and G(x, y) have the common marginal d.f.’s
Fi(x) and Fy(y). G(x,y) is said to have larger quadrant dependence than
F(x,y), if G(x,y)>F(x,y) for all (x,y) € R?, and we write G(x, y)>
F(x,y) (Q.D.).

DEFINITION 2. F(z,y) and G(x,y¥) have the common marginal dis-
tribution functions. F(y|x) and G(y|x) are conditional d.f.’s of F(z, %)
and G(z, y) given X=x. G(x, y) is said to have larger regression depend-
ence than F(x,y), if for 2'>x, F ' (u|2)=F'(v|x) implies G'(u |z )=
G '(v|x). And we write G(x, y)> F(z, y) (R.D).

In [4], we have seen that G(z, y¥)> F(x, y) (Q.D.), if G(x, y)> F(x, y)
(R.D.), and that for p'>p, @p'(x, y)>Po(x, y) (R.D.).

PROPOSITION 6. If either of the following properties is satisfied,
then M(G)=M\(F'), where the equality s attained, iff F(x,y)=G(x, y),
(i) Gz, y)>F(z,y) (R.D.), and F(z, y)>Fi(z)Fy(y) (R.D.),

(i) Gz, y)<F(x,y) (R.D.), and F(z, y)<Fi(2)Fy(y) (R.D.).

PrROOF. We prove only in the case of (i).
M(F)={ (F@, ) Fx) @) dF @,
= F@, - F@FR@yary| dF @)
={ 1P, F @l o)~ F@FE-@| o) TdudFe) .

By our condition, we get for any x and u
G, G '(u|x)=F(x, F'(u|x)),
and that

1-Gy(#) -GG (u | 2))+G(z, G (u |2))
21-F(z)—F(F(u|2))+ F(z, F~'(u|x)) .

Hence for any « and u

G(x, G7'(u | 2)) —Gy(2)Go(G(u | %))
2F(@, F(u|2))— Fi(2) F(F(u|2)) 20 .

i

This completes the proof.

PROPOSITION 7. If either of the two following properties is satisfied,
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then My(G)=My(F'), where the equality is attained, iff G(, N=F(x, y),
(i) G(x,y)>F(z,y) (Q.D.), and F(x,y)>F(=)Fy) (Q.D.),
(i) G, y)<F(z,y) (Q.D.), and F(z,y)<Fi(x)F(y) (Q.D.).

Remark 2. We can not replace the condition of Proposition 6 by
that of Proposition 7. In fact let

F(x,y)=Q1—a)Fyx, y)+ary 0=a=<l, 0=z, y<1,
then

Fyx, y)> Fis(z, ¥)> Fi(x, y) (Q.D.).
On the other hand

M,(Fy) =M(F)=0, but My(Fiz)>0.

The following proposition (1) is given in [1], and we can prove 2)
similarly to (1).

ProPOSITION 8. (1) sup M(F)=1/30, and (2) sup M(F)=1/90,
where the supremum is taken over all continuous d.f.’s. The supremum
is attained, iff Hp(u,v)=Min {u, v}, or Hg(u, v)=Max {0, u+v—1}.

3. Equiprobable rankings and independence

The relation between equiprobable rankings and independence was
considered by Hoeffding in [1]. In this section we give a more precise
result. Let (X;,Y), -, (X,,Y,) be a sample of size » from (X,Y) with
the d.f. F(z,y) and let IT, be the set of all permutations of (1,2,---,m).
The statistic T' is defined by

T(Xh Yl;" Sy Xn, Yn)=('rl" ) Tn)_l'(slr' * '!sn) (Eﬂn) ’

when X, >--->X, and Y,>--- >Y,. The tie is neglected, since
F(x,y) is assumed to be continuous. It is well-known that Po(T=(t,
cee, t))=1/n! for all (¢, --,t,) €I, if F(z, y)=F(x)Fy(y). Conversely,
Hoeffding proved, in the appendix of his paper [1], that for n=5 P(T=
(t,- -+, t))=1/n! for all (¢, --,t.)€ll, implies F(x, y)=Fi(x)Fy(y), but
not for n=2, when F(z,y) has the continuous derivative f(z,¥). The
following proposition gives a complete result under a more general con-
dition such as the one that F(xz, y) is continuous.

PROPOSITION 9. For n=4, Px(T=(t,,- -, t))=1/n! for all (t;,---,%.)
€ IT, implies F(x, y)=F(x)Fyy), but not for n=2 or 3.

PROOF. Since Po(T=(ti, -, ta))=1/m+1)! for all (-, tw) €
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., implies that P,(T=(¢,,---,t,))=1/n! for all (¢,,---,t,) € Il,, we may
only prove for n=4, and give a counter example for n=3.

Case 1. m=4. It follows by definition that
M(F)+2M(F)={ Fz, 4)dF(z, 1)
—2 | Flz, ) F@)Fi@)dF(, v)
+2 | Fi@, )iF@)dRe)-1/9.

Let (X, Y)),: -+, (X, Y)) be a random sample from (X,Y) with the d.f.
F(x,y) and let

S=C(X,— X)C(Y,—Y))C(X,— X,)C(Y,—Y)
—20(X,— X)C(Y,— Y)O(X,— X,)C(Y,—Yy)
+20(X,— X)C(Y; - Y)O(X,— X,)C(Ys— Y3) —1/9 .

Then ER(S)=M,(F)+2My(F'). Since S depends only on rank statistic,
we get Ep(S)=Ep(S). Since Epr(S)=0, M(F)+2My(F)=0, which
implies F(x, y)=Fi(z)Fy(y).

Case 2. m=3. To show this part, we need the following lemma
without proof.

LEMMA. For all (t,,---,t,) €I, we have
(1) Hz(u, v)=Hp(v, ) implies Pp(T=(t,,- -, t.))=Px(T=(t, -, )7,
(2) Hy(uw,v)=u+v—1+H;1—u,1—v) implies Px(T=(t;, -, t,))=Ps
(T=(tl,---,ty)), where t,+t)_;,;,=n+1 for 1=1,2,---,n, and
v (8) Hp(u,v)=u—Hz(u, 1—v) implies
Pu(T=(t, -+, t.))=Ps(T=
(tnv' ] tl))'

Let F.(x,y) be the d.f. which is
distributed uniformly on solid lines of
Fig. 2 excluding 2 and y-axis, where
L is a nonnegative number.

Let us denote Py (T=(t,, t,, t,)) by
P.(t,t,t). Since Fo(x,y) satisfies
three conditions of the lemma, P,(1,
2,3)=P.(3,2,1) and P.(2,1,3)=P.(1,
3,2)=P,(3,1,2)=P.(2,3,1). Hence,
— we have only to show that there ex-

Fig. 2 ists L such that
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P.(T=(, 2, 3))=38!(2/3L*+2L*+2L+1/3)/41+L)".

We denote the right-hand side by P(L). Then P(0)=1/8<1/6, }‘im P(L)
=1/4>1/6 and P(L) is continuous on (—1, ). This completes the proof.
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