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1. Introduction and summary

Let Y be a random variable having gamma density

e Vfyt,  if 920,

(1) fly; py={ B'T'(m)

0, elsewhere,

where B8>0 is the scale parameter and »>—1. In this note we are
concerned with the estimation of 1/8. This situation can arise when,
for instance, one is interested in the waiting time X to the wmth event
in a series of events happening in accordance with a Poisson probability
law at the rate of 1/8=2 events per unit of time. The random variable
X has the density
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0, otherwise ,

which is the same as (1) except that 1=1/8. From now on it is this
form of gamma density which we assume to be given and we shall be
interested in the estimation of the parameter 2.

We prove that for n<1 there does not exist any unbiased estimator
for 2 and for n<2 there does not exist one with finite variance. The
uniformly minimum variance unbiased estimator (n—1)/X (n>2) is seen
to be inadmissible compared with (n—2)/X when the loss is squared er-
ror. In this case *(X)=(n—2)/X is an admissible estimator of 2. This
estimator is the unique admissible minimax estimator when the loss is
squared error divided by 2. The minimaxity of 6%, for the case n=3,
is shown to hold even when the parameter space is either [4,, ) or
0, 4], 4 a fixed number, but it is then no longer admissible.
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Our result on admissibility can be deduced from Theorem 5 of Farrell
[1]. However we felt a self contained proof is more desirable. Our ap-
proach is similar to that of Karlin [3]. A different proof based on
Schwarz inequality was found by Blyth and will be published separately
by him.

2. Estimation of 2

Suppose X is a random variable having density (2). The following
theorem shows the non-existence of an unbiased estimator for n<1.

THEOREM 2.1. Let n<1. Then there does mot exist any unbiased
estimator of A.

Proof of this follows from Theorem 2.2 [2]. We have only to notice
that the family of densities (2) is complete, that for 2=1, E(1/X) does
not exist for n<1 and that 2 is the scale parameter of the distribution
of 1/X.

It is easy to check that for »>1, (n—1)/X is an unbiased estimator
of 2. But for n<2, the following result is true.

THEOREM 2.2. Let n<2. Then there does mot exist any unbiased
estimator of 2 with finite variance.

Proof of this is similar to that of Theorem 2.1.

As remarked earlier, (n—1)/X, n=2, is an unbiased estimator of 2.
In fact, for »>2, it is a uniformly minimum variance unbiased estimator
of 2. This follows from the fact that X is a sufficient and complete
statistic for 2. But this estimator is inadmissible as the estimator o*(X)
=(n—2)/X uniformly improves upon it. In fact the estimator 0* is the
best one (with respect to squared error loss) among all estimators of the
form 7/X, where 7 is a constant. We now prove that o* is admissible.

THEOREM 2.3. If the loss is squared error divided by 2 then the
estimator 0*(X)=(n—2)/X is the unique admissible minimax estimator
of A.

PROOF. We shall show admissibility. The rest of the theorem is
an easy consequence of this fact and the constant risk of &*.

Let & be, if possible, any other estimator better than é*. This im-
plies that the inequality

| B@ -1 1 Pz @)1 f(o; D
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must be true for all 12 and strict for at least one A. The above in-
equality simplifies to

(3) |, (@) — o @Pr-tearide
<2 S“ [%() — 8()] [5*(@) — A"l ~dz .
Let dF()=di/A2 and let 0<a<b<oo. Define T(2)=S°° [o*(x)—d(x)]
0
Jre=grdg, Then using the fact that; d is better than ¢* and

Sw [5*(m)—2]2—'zn—e"“ac"“dx= z we get, by Schwarz’s inequality,
0 I'(n) n—1 ‘
(4) (7 [0%(@) — 2@ [0*(5) — e 0 dw <K' 2
J0
and similarly
(5) T(A=Zk2,

where k, k' are constants depending on n. Now integrating both sides
of (3) with respect to dF we get

RCETZ I IO OIOR reenids | Lz
=2 S: [6*(x)—a(2)] {S: [6*(x)—A] ,2""6“‘d2} x"'dav
=2 S” [6%(z) — 8(2)] [b*~ %> —ar%e =]z
< 2{ | 34() —3(a) | brte e
+{ 15 @-3)| @t dal
sa([[” @ —snrewds] ([ oo e da)”
+[| @) —s@)arter-ide] [ | arteridal )
and this implies

(6) S" T(z)z—'*dzgz[%f T(b)'+%-~/T_(a)]F(n—2)‘/2 :

The rest of the proof consists of showing that the R.H.S. of (6)
tends to 0 as a—0 and b—oo. From (4) and (6) it follows

D The change in the order of integration is justified by (4).
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(7) S: T dA<4vE (n—2)".

Now if for ¢>0 there is a 4, such that for A2>4,, T(2)/i*>¢ then
SNT(I)l‘“d1>Sw eA"'dA=oc0 which is impossible on account of (7). There
[] 2,

0
exists, therefore, a sequence of real numbers {b;)}— oo such that T(b,)/b}

—0. Similarly we can show that there exists a sequence of real num-
bers {a;}—0 such that T(a;)/ai—0. These two together and (7) imply

that Sm T(2)2*d2=0 and hence é(x)=0*(x) a.e. proving admissibility of a*.
0

COROLLARY. 0* is admissible with respect to squared error loss.

It may be remarked that the minimaxity of é*(x)=(n—2)/X with
respect to the loss squared error divided by 2* also follows from Lehmann’s
well-known result [4], by choosing the a priori distributions on 2 as

e—plx—l-l—v

L2, 0<i<oo.
')/

g,,,()=

Minimaxity also follows from invariance.

Incidentally notice that in the proof of Theorem 2.3 we have been
guided by the hope that é* is Bayes in the wide sense with respect to
dF(2)=di/2, 0<a<i<b as a—0, b— oo but we have not made any use
of this Bayes property and indeed we do not know how to prove it for
all n; the case n=3 is easy to handle and the wide sense Bayes property
among estimators with bounded risk does follow from our proof.

3. Case of truncated parameter space

Let A€ 2,=[4, ] or 2,=(0, 4] where 4, is a fixed real number.
We shall show that the estimator 6* remains minimax for these trun-
cated parameter spaces.

THEOREM 3.1. Let 2€ 2, or 2€ 2, and let the loss be squared error
divided by 2*. Then 6¥(X)=(n—2)/X, n=3, is a minimazx estimator for A.

ProOF. Let 0<a<bd and let g,,(2)=Fk/2 if a<i<b, and equal to
zero otherwise, be an a priori distribution over the given parameter
space. Here k=[log (b/a)]"!. The Bayes estimator J,, corresponding to
0.5 is given by

0a,0()= <S: 2-136“’:v22"’d2> / (Sb Xse“‘xzx"ﬂ)
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— _51? + (we—u — be—bz)/(e—ax_ e b.r) .

If 7(3,,) is the Bayes risk corresponding to g,, then
b o 3
)= [ Bose) =172 2 te-da | Ka,
which after change of order of integration simplifies to

7(0,,5)= -;— — -é— [log l’-] - Sm z[e~* —e **] [ae~** —be '
a 0

>33 los 2] (62 (550 )]
=—;-—%b“(b—a)[log %—]_l—%b"(b—a) [log -2-] -,

From this it follows that
. 1 . 1
lim 7(3,,,) =— and lim 7(6,,,) =— .
a—0 2 b—oo 2

Since (3, ,)<risk of §* (which is equal to 1/2) for all a, b, 2 it follows
that lim»(3,,)=1/2=lim 7(3,,) proving thereby that &* is minimax for
a—0 b—oo

the truncated parameter spaces 2, and £2,.

That 6* is not admissible follows from a comparison with its trun-
cated version. But even the latter is not admissible which can be shown
as in Sacks [5].
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