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1. Introduction

Ogawa [4] obtained the asymptotically minimum variance linear
asymptotically unbiased estimator (ABLUE) for location or scale from a
chosen set of sample quantiles. It was soon observed (Tischendorf [7])
that the asymptotic variance of Ogawa’s estimator is essentially the recip-
rocal of a Riemann sum for the information integral for the parameter
being estimated. Thus under mild regularity conditions the ABLUE
approaches asymptotic efficiency as larger sets of more closely spaced
quantiles are chosen for use.

In [3] the author examined several analogs of Ogawa’s estimators
for multivariate location parameters. The basic idea was to use the
ABLUE from chosen sets of sample quantiles in each direction and from
the observed cell frequencies in the random partition generated by these
quantiles. These classes of estimators are asymptotically mearly efficient
(ANE) in the sense that for every ¢>0 there is an estimator in the class
with asymptotic efficiency >1—e. Here efficiency is measured by a com-
parison of the asymptotic covariance matrix to the inverse of the infor-
mation matrix.

In Section 2 of the present paper we present another class of ANE
estimators for bivariate location parameters. This is the class of ABLUE’s
from a chosen set of marginal sample quantiles in one coordinate direc-
tion and from conditional sample quantiles in the other direction (a pre-
cise description is given in Section 2). The resulting estimators are
somewhat simpler than those of [3], and are perhaps a more natural
generalization of Ogawa’s work.

Common estimators of multivariate location parameters have the
property that each component of the parameter is estimated using only
the corresponding component of the observations. Except in special cases
(which, however, include the normal case) such estimators cannot ap-
proach asymptotic efficiency, since they use only the information contained
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in the marginal distributions. The present estimators and those of [3]
allow efficiency arbitrarily near 1 to be attained for any smooth location
parameter family, but at the cost of computational complexity and prob-
able loss of robustness.

There is a close connection between estimation and testing in location
parameter families. Common tests for multivariate location also fail to
use information beyond that contained in the marginal distributions.
See Bickel [1] and Sen and Puri [6] for typical tests. In Section 3 we
show how ANE estimators can be used to obtain ANE tests for location.
These have the same advantages and disadvantages relative to more
common tests as do the corresponding estimators. ’

2. Estimation

Let F(x—6,,y—0;) be a bivariate location parameter family with
continuous density f(x—#6,, y—8@,). Choose

O=q<a,< "+ <ay<ay;,; =1

and let x} be the population a;-quantile in the z-direction, with the con-
vention that zf=—oco and z},,=c0. For each 1=1,..--, N+1 choose

OZABi0<,Bi1< e <Bivi<ﬂi,vi+1:1
and let y¥ be the conditional population g;,-quantile, i.e.,
PlY=y| ot < X=Zwx¥]=8i; Jj=1---,

and yf=—oo, y¥, ,;=co. The x¥ and y} depend on the parameter 6=
(61, 0;) as follows: if x, and y,; are the corresponding quantiles when
60=0, then «¥f=wx,+6, and y}=y,,+0;.

Let &, -+, &y denote the sample a;-quantiles from the z-components
of a random sample of size » on the population. For each i=1,..-,
N+1 let §y,---, 8, be the sample B;;-quantiles from the y-components

of those observations (z, y) with ¢,_;<x<¢,. We will find the ABLUE
of 6, and 6, in terms of the £, and {;, and show that the resulting class
of estimators is ANE. The method of proof is that of Ogawa: we find
the joint asymptotic distribution of the &; and {;, and hence the least
squares estimators of (6,, 6,) from the asymptotic distribution. By stand-
ard least squares theory these are the ABLUE’s. The only mathematical
difficulty is to find the joint asymptotic distribution needed. We handle
this by observing that the distribution of the {;; conditional on the ¢,
is multinomial.

The lines =2} and y=y} partition the plane into %‘:1 (v;+1) cells.
i=1
The probability of an observation on F(x—#6,, y—g.) falling into the cell
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with “northeast corner” (x¥, ¥¥) is independent of ¢ and is given by

pi;=F(x;, yi;)— F(x,, Yi, ;-0 — F (@it Yi)) + F(@:_y, Yi,j-1)
=(ai_ai—l) (.Btj"‘.Bt,j—l) .

Setting p,;=4,,F defines difference operators 4,, which we will later
apply to other functions. Note that our conventions imply that F(x,
Yu)=0 and F(x;, ¥i,.,41)=Fx(x;), where Fy is the marginal cdf in the
z-direction. If F, and F, are the first partial derivatives of F’ with re-
spect to x and y, respectively, then Fi(z,, y)=F(x, ¥2)=0, Fi(®, ¥i..+1)=
fx(x) and Fy(xy,:,y)=0; similar results hold for F;. Define the 2x2
information matrices I and I* with entries

I“:Sw Sw Sz, v)-fu=z, y) dxdy

—ed-e f(@, 9)

N+1 v;+1 A F 'A F

* ijL 8" AijdL ¢
Ii=3 3 et

for s, t=1, 2.
Then we will consider the linear estimator 6* of # given by #*=
(I*)'Q, where @ =(Q,, @) (prime denotes transpose) and

N+1 vy

N 1
Ql:;léi—"l my(§i— )+ g_l E R (Cis—Yi5)

N+1 v

Qz-_—'tZ:=l My (§i— )+ ?‘:1 jgll haij(Cis—Yi5)

v+l

My= D) {—Ai—};'&[lrl(xt y yij)'—m(xi y yi,j—l)]}

J=1 if

viy1 ¥l {

ussi P, Yo, )~ Fi@or Yoo
Pt+l,f

in

hstj=< 4P, _ 4o s By )[Fz(xi i) — Fo(iy, Yip)l -
P, P

The estimator #* is translation-invariant, as follows easily from the re-
lations

N

2 mli_Ill
t=1

y %
> my=1I3}
i=1

N+1 v
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N+1 v
P h2c1=Iz§< .
i=1 =1
The coefficients of 6* are rather complicated, but are straight for-
ward to compute if F, F; and F, can be expressed in closed form. In
that case it is simple to program a computer to produce the various
difference operators required and hence the coefficients of #*.

THEOREM. Let F(x—6,,y—0;) be a location parameter family with
continuous density f(x—6,,y—6,). Then the components of 6* are the
ABLUE’s for 6, and 0, in terms of the &, and {,;. When 6 is true,
Vv n(6*—8) converges in law to the bivariate mormal distribution with
means 0 and covariance matriz (I*)™. I* 1is the information matrix
Jor 0 from the asymptotic distribution of

{(vn(i—xF), vn(C;—yh): al 1 and j}.

If the integrals I,, are finite and the derivatives f, and f, are con-
tinuous, each IY¥ can be made as close as desired to I,, by appropriately
choosing N, v;, a; and B;;. The class of estimators 6* is therefore ANE.

Proor. We first compute the asymptotic distribution of the v ({,,—
y%) conditional on the v (¢,—x}). Let

P,=P[vn(C;—y¥)<vy: all ¢ and j|yn(§—x¥)=u;: i=1,.--, N].

Partition the plane by the lines x=x¥+w,/v/n and y=y}%+v,/v¥7, and
denote by N;; the number of observations falling in the cell with “ north-
east corner” (x¥+u/v 2, y§+v,/vn). Then if we understand the sam-
ple a-quantile from % observations to be the [na]+1 order statistic,
events involving the §; and §;; can be described in terms of the N;,.
In what follows we will neglect the difference between [na] and na. It
may be easily verified that the asymptotic results are not affected, and
ignoring the greatest integer notation will greatly simplify our notation.
With this understanding, we have

%
P"ZP[E Nyz(—a;i)Bun: t=1,-++, N+1; k=1,---,y,
v+l .
E M/=n(a¢—a¢—l): 1=1,.--, N] .

The key to the proof is the observation that under the stated con-
ditions, the sets of r.v.’s {N,: j=1,-..,y,+1} for i=1,-.-., N+1 have
independent multinomial distributions. Specifically, for each i=1,---,

N+1 let {n;:j5=1,---,v+1} be multinomial r.v.’s based on n;,=n(x,—
vi+l

@;_;) observations with cell probabilities % / 3 p?;,, where
j=
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piy= F(z4ul/vn, Yis+ vV M) —F(z+w/vn, ’.lli,/-1+’vi,j-1/~/_77)
_F(xi—l'i_ut—llﬁy yu‘}"vu/\/_"_i)
—F(xi—l+ui-l/1/_'h—9 yi,j—l+’u'l,j—l/ﬁ) .

Then

N+1

N+l k
Pn=;l;l- P[?‘:lnugniﬁu: k=1,-.-, ”¢]=Tr P, .

1

Clearly p? do not depend on ¢ and p}—p;; as n— oo.
"i+l

We now find the limit of P,, for each fixed 7. Set pj=pi; ,2 s
and define
Qo= VN (My5/1,— DY) J=1, v

Since pi— pi;/(;—a;—1) = Pi;— Bi, ;-1 the r.v.’s {Q.: 7=1,--+,v;} are asymp-
totically N(0, V,), where V, has entries

I’stz —(ﬁi:_ﬂi,:—l) (ﬂu—ﬂc,z_g) s+t
V= (ﬂu '_.Bi,t—l) (1—13it+,8i,t—1) .

This follows from the usual characteristic function proof of asymptotic
normality for multinomial r.v.’s, which is not affected by convergent
sequences of cell probabilities.

In terms of the Q,,,

where p,=p,,/(a;—a;-). Applying Taylor’s theorem to the difference
p,—p? gives, after some arithmetic,

Po=P| 3@z —(@—a) ™
o (buvutegu—dgu_)+o(1): k=1,---, ui]
where
bu=Fy:, Yur)— Fo@io1, Yur)
cu=Fi(@:, Yu) — BuS(%)
du=Fi(®i-1, Yu) — Burfx(®i-1)

with the conventions
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Ci+1=0; Cyy1x=0 for all k;
dy=d;, .1=0; d;=0 for all k.

Finally, replacing Q,, by —@Qj. (which does not change the asymptotic
distribution),

P,,,:P[b;; {(a,‘--oq_l)'/2 jﬁ Q,,.—cikui+d“ui_,}
<vuto(l); k=1,---, vi]
P [b‘k {(ai——ai_l)‘/z jz Z,—ctku,+d,,‘u¢_,}
<vy; k=1,---, u,]

where the Z, have the N(0, V,) joint distribution.

It is now routine to compute that the r.v.’s {

M=

Zj: k=1," ‘,U{}

J=1

I

are N(0,V,), where V, has entries
I_,at:ﬁu(l_ﬁit) 3§t )

and that the joint asymptotic distribution of the v (€.;—y¥) conditional
on ¥Vn(§—x¥)=u; is N(Au,ZX). Here w'=(uy, -+, uy) (prime denotes

N+1
transpose) and A is the <5‘: u,> X N matrix with all entries 0 except

i=1
t—1

A,t=-—c,¢j/bu, sziz ”t+j, 1§j§”zy 1§t§N+1
=0

¢
zdt,j+l/bt,j+1y 3=§ vi+7, 1=j =y, 1<t<N

(recall that v,=0). Setting r=]:2+1 y;, 2 is the X7 matrix with all en-
=1

tries 0 except for v, Xy, submatrices J; (i=1,---, N+ 1) arranged in order

of increasing ¢ down the diagonal. J; is trivially related to V. and has
entries

Xlt:(at_ai_l)&%u;Tﬂ“)— , s=<t.

The asymptotic distribution of the y7 (&, —2}), i=1,.--, N is well
known to be N(0, C), where

— a,(l1—a)
C=Fehen . °

From this it follows routinely that the asymptotic distribution of the

<t.
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N+7 random variables

(WRE—2), i=1,+, N; ¥TCy—yh), i=1,--, N+1;
i=1,-+-, v}
is N(0, Z4), where
_|CHAZA —AS
2*1:
—37'4 3

3! is easily calculated; its entries are 0 except for v, Xy, blocks 37!
along the diagonal. J;! in turn has all entries 0 except

(Zi_l)tl::bgt(llpit+1/pi,t+1) ’ t=1,-+-,
(Zi_l)t,t—-lz(zi—l)t-l,t: —bttbi,t—llpit ’ t=2,---,y;.

Setting z¥=2x;+6, and y%=y;+0., we see that asymptotically the
(N +7r)-dimentional r.v.

Z=(E—1, ) Ex—» Cu—Titr* s Covtty py = Unrttngs)
is N(Bf, n'Zy), where ¢'=(6;, 6;) and B is the (N+r)x2 matrix with
1 s=1,.--, N
0 s=N+1,---,N+r
0 s=1,---, N
1 s=N+1,.-+, N+r.

By least squares theory the ABLUE for ¢ is
6*=(B'>5'B)'B'2;'Z
and /7 (6*—6) has asymptotic distribution N(0, V(6*)), where
V(e¥)=(B'Z'B)™.

It is now straight forward (although quite tedious) to verify that 6* is
as given in the statement of the theorem and that B'Zy'B=I*. The
form of B quickly yields that (B'23'B)y is the sum of the entries of
C'4+A'S'A, (B'S3B), is the sum of the entries of —A’Y~", and so on.
Similarly, the entries of the 2x(N+7) matrix B'Zy' are sums of the
columns of the 4 submatrices comprising J3. We omit the details of
the computations.

If f has continuous derivatives, we may represent F, Fj and F, as
integrals of their derivatives and observe that each I* is essentially a
Riemann sum for I,. Each I} can be made arbitrarily close to I, by



48 D. S. MOORE

choosing «; and B, sufficiently near 0, ay and Bi,, sufficiently near 1, and
the remaining «, and B,; so that the norm of the partition formed by
the lines x=x,, y=y,, is sufficiently small. The routine details of the
proof will be omitted. A similar proof is given in detail in [3].

3. Testing

There is a close connection between estimation and testing in multi-

variate location parameter problems. Suppose that é,,(X ) is an estimator
for the k-variate location parameter #=(4,,- - -, 6,) such that

L{V78,(X)|6=0}—N(0, p) .

Here we have used a standard notation for convergence in distribution
and X'=(X,,:--, X,) is a random sample. Then we can test the hypoth-
esis H,: =0 by using the critical region

10,702 c
or
n8,6;'6,=c .

where ,§,, is a consistent estimator of the asymptotic covariance matrix
B. Clearly

L(nb,876,|6=0}— 2,

the chi-square distribution with & degrees of freedom.

If én is translation-invariant, we can find the asymptotic relative
Pitman efficiency (ARE) of two such tests by an elegant standard argu-
ment. Considering the sequence of alternatives 6,=5/y 7 (0 a k-vector),
we have

LIVT6,(X)[0=53/VT) =L{J/T 6(X+5]vT7)|0=0)

since X has location parameter #. Translation-invariance of é,, implies
that

(2.1) LR b6(X+5/y7)|0=0}—> NG, p) .
therefore, if T,,:né,,ﬂ"é,’.,
(2.2) L{T,|0=3/y T} —1(&'87),

where ¢'87'0 is the non-centrality parameter. It is well known ([2]) that
the ARE of two test statistics which are asymptotically non-central chi-
square under Pitman alternatives is the ratio of their non-centrality
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parameters. Most test statistics for multivariate location, in particular
those of [1] and [6], satisfy (2.2).

We have already remarked that our estimators #* are translation
invariant; they therefore satisfy (2.1) and (2.2) with g'=I* If T,
satisfies (2.2), the ARE of the test based on 6* to that based on T, is
therefore §'I*3/6’p'6. This of course depends on the direction of ap-
proach to the null hypothesis. But I* can be made arbitrarily close to
the information matrix I, and it is well known (Satz 1.13 on p. 356 of
[6], for example) that for any regular unbiased estimator with covariance
matrix B

0'I6=6'p'6  for all 4.

The quantity ¢’I6 therefore plays a role in the theory of ARE for tests
based on estimators analogous to that of the Cramer-Rao lower bound
in the theory of ARE for estimators. We can say that tests based on
the ANE class of estimators #* form an ANE class of tests among tests
satisfying (2.2).

The remarks of this section apply also to the three classes of ANE
estimators discussed in [3]. The first two classes, which are ABLUE’s
from sample quantiles and cell frequencies in certain random partitions
of k-space, can be seen on inspection to be translation-invariant. The
third class, based on RBAN estimators for multinomial problems, need
not be invariant. In this case (2.1) can be shown to hold by direct com-
putation.
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