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Introduction

Consider the results of J independent replica I different treatments.
Let Y, (:=1,---,I; j=1,---,J) designate the observed random vari-
ables. We assume that the distributions of Y,; follow Model II of the
analysis of variance, namely,

(1) Y,=p+ate,, i=1,---, I, j=1,---,J,

where ¢, are mutually independent, having a normal distribution with
zero mean and variance ¢. a, are normally distributed random vari-
ables, mutually independent of each other and of the e, having zero
means and equal variances, ¢;. p is an unknown constant. Further-
more, —oo<p< oo, 0<a <o, 0<ai<oco. The parameters, ¢} and o, are
called the components of variance (‘ within’ and ‘ between’, respectively).

In the present paper we consider the problem of characterizing all
Bayes estimators of &2 and ¢ which are translation invariant and scale
preserving. That is, if ¢(Yy,---,Y;s;) is an estimator of either ¢ or
of &2, and if we subject the obserbations to any transformation of the
group,

G={Y,,»a(Y,;+p), a>0, —o<p<L >0},

then ¢(Yy,- -, Y) > Yy, -, Y1)

Each of the transformations in & subject all Y;; first to a transla-
tion and then to a change of scale. Following the terminology of Berk
[1] and of Wijsman [10], we call such estimators equivariant with re-
spect to G.

The estimation problem is studied here with a squared-error loss
function. Thus, following the Blackwell-Rao Lehmann-Scheffe’s theorem
[5], we consider equivariant estimators which are functions of the mini-
mal sufficient statistic (Y.., S?, S;), where
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I J I J —
Y.=3 3%/, S=33,-Y)"
V=5 YT (=1, 1), and Si=J3}(F—Y.).

7

These estimators are called sufficiently-equivariant. Subjecting Y, to a
transformation in &, the minimal sufficient statistic is transformed to
((Y..+p), a*S?, &*S?). In particular, all sufficiently translation invariant
estimators of either &2 or of 42 are functions (properly measurable) only
of (S?, S?). Furthermore, all sufficiently-equivariant estimators of ¢; can
be written in the form

N Sz
2 t=Sto( 25,
(2) =S
and those of ¢2 can be expressed as
rr _ qa gl Se
(3) aa—Sagb<S:).

R=S8?/S? is a maximal invariant statistic. The objective of the present
paper is to characterize all the Bayes estimators of 42 and of ¢ which
are equivariant with respect to transformations in &. For this purpose
we present in Section 1 the required distribution theory. The Bayes-
equivariant estimators are derived in Section 2. In Section 3 we illu-
strate Bayes-equivariant estimators for a particular prior distribution.

The class of all estimators of ¢ and of ¢> which are given in Sec-
tion 2, together with all estimators obtainable as limits of these esti-
mators is essentially complete with respect to all equivariant estimators.
In other words, given any equivariant estimator of ¢ or of ¢2, one can
find one in the above class which is at least as good with respect to the
mean-square-error risk function. However, as we show in Section 4, all
Bayes-equivariant estimators of ¢ are inadmissible in the wider class of
all possible estimators, with respect to the mean-square-error risk func-
tion. This in itself is an interesting theoretical result, the establishment
of which requires a judicious application of a method introduced previ-
ously by Stein [7]. As shown by Klotz, Milton and Zacks in [4], the
performance of certain equivariant estimators of o2 is very close to op-
timal, although the estimators are inadmissible in the general class.
Roughly speaking, the inadmissibility of the equivariant estimators is
due to the fact that they are all independent of the sample grand mean
Y... This statistic contains some information concerning ¢! and o2, since
E{Y}=(p+d/IJ+d./I. An example of a mon-equivariant estimator of
g2, which is admissible, is

a:(00) =[St +(Si+ T Y2) (1 + po] )/ (IT+2) .
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If one knows that £=0 and ¢/o}=p, then (o) is the unique admissible
estimator of o2 (see proof in Hodges and Lehmann [3]). Hence, since
the mean-square-error risk function of 3(o,) is a continuous function of
60=(g, ¢, p), 7:(o) is admissible where p=di/o;. However, oi(p) is a very
inefficient estimator when p is unknown, and one can exhibit equivariant
estimators of ¢ which have a considerably smaller mean-square-error
than that of &2(o), when |p—p,| is large. Furthermore, equivariant
estimators of &2 and ¢ are the only ones to consider if we adopt the
invariance principle. Thus, the characterization of the essentially com-
plete classes of equivariant estimators seems to attain an important ob-
jective in the study of the analysis of variance Model II.

1. Distribution theory

In the present section we present the distributions of the various
random variables, and in particular we derive certain conditional distri-
butions required for Sections 2 and 4.

Starting with the sufficient statistics (Y.., Si, S), it is a straight-
forward matter to verify their independence (see, Graybille [2], p. 88)
and that

Se~aey'[I(J—1)]

(1.1)
Se~a:(1+Jp)'11-1]

and

2 ofq. LI ]
Y ~a(1+Jo)y [1 ST )
where y’[v] designates a central chi-square random variable, with v de-
grees of freedom (d.f.), and y’[v; A] designates a non-central chi-square
random variable with v d.f., and parameter of non-centrality A. The
non-central chi-square distribution law is a mixture of central chi-squares,
with mixing probabilities given by the Poisson distribution with mean
A. This well known property (see, Graybill [2], p. 74) can be schematic-
ally written as

1.2) v A~rv+2M], M~P@),

where P(2) is a Poisson random variable with mean 1. Let X|Y~Z
state that the conditional distribution law of X, given Y, is like the
distribution law of Z. Thus, we obtain from the model (1) that
(1.3) S2|(@y,- -+, ar)~ai’[I—-1; Aa)] ~a [ I—14+2M,] ;

M,~P(Xa)),
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where
(1.4) @=L F@-ar, a=13a
) 20% i=1 ¢ ’ - I i=1 ‘
Similarly,
(1.5) Y. |(ay,- -, ar)~aiy’[l; @)~ [1+2M] ,
M,~ P(2%(a)),

where M, is independent of M,, and

(1.6) *a)= g (e+a).

e

In the next section we need expressions for the following conditional
expectations: E{S:S:| R}, E{S:|R} and E{S!| R}, where R=S}/S;. To
obtain these conditional expectations we prove that

2 aR(1+pJ) .
1.7 Si|R~EA+pd) wrr 4
.7 | 1+ B+l pall ]
and
R (1+pJ) .
1.8 S.S, | R~9R"A+eJ) urrr 17,
(1.8) | 1+R+pJ rT=1]

Indeed, if g2 52(%, y) designate the joint density of S!, S: we have

1.9 , V/2=1, (T—1)/2-1 {_L__y—} ,
e R R i~ i =T wwy

for 0=, y<oo, where v=I(J—1). Making the transformation R=S;/S}
we obtain that, the joint density of S? and R is

(L10)  gs2 a(y, V) =g(r)y" 9" " exp {_ 2 <%+ 1+19J )} '

0<y, r<oo, where ¢(r) is a function depending only on ». (1.7) is
obtained immediately from (1.10). In a similar manner, making the
transformations R and W=S2S? we obtain from (1.9) that the joint
density of R and W is

0<7, w<oco. Finally, making the transformation V=W" (the positive
root) we obtain
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) _ _ 1 ,’.1/2
(1.12) gy, (v, ) =(T)v"’ D/2-1 exp {"?Z;:(’;ﬁ_‘_ 1+pJ)} .

From (1.12) we arrive at (1.8).
Thus, from (1.7) and (1.8) one obtains

1) py — Gel(+pd) (77
(1.13) E{S:|R}= 1+ B+l 1J-1),

o py— OB (+pd) iy
(1.14) E{S:| R} AL R+ol) (rrJr:-1),
and

2 Q2 — U:R(1+PJ)2 2 T2
(1.15) E{S:S:| R} —————(1+R+pJ)2 I*J*—1).

2. Bayes-equivariant estimators

2.1. Estimators of .

It is instructive to remember that if the variance ratio p=di/o} is
known, there is an essentially unique best equivariant estimator of ¢,
namely

@.1) a:<p>=7J—£rT[sz+s:/(1 +od)].

Indeed, if p is known there are only two unknown parameters: (g, o),
—co<pLloo, 0<a?<oo. The minimal sufficient statistic in this case is
(Y.., S2+82/(14+Jp)). Moreover, every equivariant estimator is of the
form A[S?+S?/(1+Jp)], where 2 is a constant. Since S;+Si/(1+Jp)~
ai[LT—1] it is simple to prove that the value of 2 which minimizes uni-
formly the mean-square-error of the equivariant estimator is 1=(IJ+1)™".
It is also easy to verify that the mean-square-error of a}(p) is equal to
204(IJ+1)71.

When p is unknown there exists 7o uniformly minimum mean-square-
error equivariant estimator. As discussed in the introduction any equi-
variant estimator of ¢ can be written in the form (2), or equivalently,
as

S:
J+1

(2.2) g.= (1+Rf(R)),

where f(R) is a properly measurable function of the maximal invariant
R=82/S?. Formula (2.2) can be considered as a generalization of (2.1)
to the case of unknown p, in which f(R) is a properly chosen estimator
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of the unknown function (1+Jp)'. We choose the function f(R) so
that the equivariant estimator (2.2) is Bayes against some prior distri-
bution of (a3, p). In other words, given a prior distribution of (a2, p)
we can associate with every equivariant estimator the corresponding
prior risk (the expected mean-square-error risk with respect to the given
prior distribution of (42, p)). An equivariant estimator which minimizes
the prior risk is called Bayes equivariant. It should be remarked that
the Bayes equivariant estimators are not necessarily Bayes in the gen-
ral sense (one which minimizes the prior risk among all estimators).
This is the case in estimating ¢2”. We shall further see that the prior
distribution of the parameter ¢2 does not play any important role in the
determination of the Bayes equivariant estimator. In order to obtain
the Bayes equivariant estimator it is necessary to specify only the prior
distribution of p, and then use the following formula

— Eorel(1+pJ)/(1+pJ+R)}
®3) TAR)= Eplln,e{(l +pJ)/(1+pJ+R)}

where f(R) designates the function to be substituted in (2.2), and E, {-}
designates the posterior expectation of the function of p in the brackets,
given R and the prior distribution ¢ of p. We verify now that this
indeed gives the Bayes equivariant estimator of o.

Let R/(s:, p) designate the risk function (mean-square-error) of an
equivariant estimator (2.2), as a function of (a2, p). We have,

@4) B 0)=E{[ D (1+RIB) 2] ]

+1
=E{[%T(1+R-ﬁj)

IJ+1 L (f(R)-

24" S?
=20 2E{[ : (1
T+t Rt

—ai+

=l

Tl
| f(®)—

IJ+1 W]}

+El S f(R)—

2
(IJ+1)2 < 1-|—pJ> }
By the iterated expectation law, we can compute the R.H.S. of (2.4) by
determining first its conditional expectation given R, and then the total
expectation. Substituting in (2.4) the conditional expectations given by
(1.13)-(1.15) we obtain, after some algebraic manipulations,

D This statement is substantiated in Section 4.
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‘ PO
25) R, p)=—2%_ 41

J+1  “IJ+1
ER.,,{RZO(TIK%-[J"(R)—#] 3

Formula (2.5) shows that the decision problem does not involve the
parameter o;. If p is known we choose f(R)=(1+pJ)™! and minimize
R/(d}, p) uniformly. Furthermore, for values of (a2, p), the risk function
is not smaller than 24!/(IJ+1) for all choices of f(R) when p is unknown.
Moreover, since the distribution of R depends only on the parameter P
we have to assume, without loss of generality, only a prior distribution
for p. Let ¢ designate the prior distribution law of p". Let R/q,¢)
designate the prior risk under f, given o? and £. R,(, &) is the expec-
tation of R (d?, p) with respect to & Let

2.6) Q,(s):Ep.e{Emp {Rzﬁ%%[f (R)_1—+1,,7] 2“ '

By virtue of the Fubini theorem?®, we can write

=En B Eanel g s | F® =157 ]
@D QO =En{RE | e s - LT
The function f(R) given by (2.8) minimizes the posterior expectation
E,z:{-} in the R.H.S. of (2.7) for (almost) all R, and hence it mini-
mizes Q,(§), and R,(s?, £). We remark that if the prior distribution
law & concentrates the whole probability mass on a point p, one attains
from (2.2) and (2.3) that the corresponding Bayes equivariant estimator
of o} is the locally best equivariant estimator

\ S R
2. o) =—Se_[1 .
2:8) e =1r9 [ +1+p0J]

2.2. Estimators of o:.

When p is known the best equivariant estimator is obviously aip)=
p6:(p)=pS:(1+ R/(1+pJ))/(IJ+1). When p is unknown we can present
all Bayes equivariant estimators of ¢2 in the analogous form

(2.9) s St Eyrelo(l+p)/(1+R+pJ)}
“TIU+1 E,nd(l+o}/A+E+pJ)}

In particular, when the prior distribution law assigns o a prior distri-
bution concentrated on the point p, we obtain from (2.9) the locally best

D One can also say that & is the conditional prior distribution law of o, given ..
» One can prove that the Fubini theorem holds, when f(R)=f«(R) for all proper prior
distribution laws ¢ of p,
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equivariant estimator

n S: R
2.10 (00) = ¢ .
(2.10) a:(00) =po T4l (1+1+p0J)

To verify (2.9) we write the mean-square-error of an equivariant esti-
mator of the form (3) as

(2.11) R,(a:, p)=E((Si¢(R)—02)'}
=E{E{(Si¢(R)—pc.)'| R}} .
Substituting the conditional expectations (1.13) and (1.15) we obtain

o () BA+I)
(212)  Riel, 0)=ctEu, [¢B){ B S (1T —1)

—z¢(R)p—1’%r”—‘%(IJ—1)+p2} :

Using the same method as in Section 2.1 we obtain that the function
¢«(R) which minimizes the posterior risk is

_ 1 Euede(tel)(1+R+pI))
(2.13) W =B ITHT) BamelQF ol F(LT R+ 0D}

Multiplying (2.13) by S we obtain the Bayes equivariant estimator (2.9).

3. An example of non-trivial Bayes equivariant estimators

To derive an explicit expression for some non-trivial Bayes equi-
variant estimators we notice that, since R~(1+pJ)((I—1)/I(J—1))F[I-1,
I(J—1)], where F[y, ;] designates a central F statistic with »;, and »,
d.f., the density function of R given p is

1
(1+Jp) P B((I-1)/2, I(J—1)/2))
,'.(I—S)/Z

e )R

0<r<oo, where B(a,b) is the beta function, 0<a, b<co. Make the
transformation ¢=(1+Jp)™!, and let ¢ have a prior density function h(yp)
on [0,1]. Then, the posterior density of ¢ given R is

3.1  fPrl|I-1,1(J-1)=

(I-1/2 -IJ-n/2
(3.2) I | R)=—"T42)¢ (1+Ry) _
I-1)/2 -IJ-D/2
[, M) ™->A(1+ Ry) 17~y

We shall consider here the special case in which the prior distribution
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of ¢ is uniform on [0,1]. Furthermore, we require that I(J—1)>4.
One can easily prove that for all 0<g, p<oco, such that q—p>1,
and for all 0<a< o,

1
a?t!

Hence, letting w(R)=R/(1+R), we obtain

(3.3) [, P+ ap)edp= N e B0

(3.4) S: ¢(I—l)/2(1 +R¢)_(1J—Dﬂd§0

b (100, ot (050, 151

where I(a, b) is the incomplete beta function ratio, 0<z<1, and 0<a,
b<oo. The condition that ¢—p>1 implies the condition I(J—-1)>2.
Applying formula (3.8), and (3.4) and using the relationship 1—I(a, b)=
I,_.(b, a) we easily find that

A+pJ) ) _ 1
3.5) E,; {m} = Eyin {m}
_ I(J-1p—2I(J—1)
rJj:—1

. Luw((+1)/2, I(J—-1)/2+1)
La((T+1)/2, I(J-1)/2—1) *

Similarly,
_A+pd) Vg (o
(3.6) E,,,,,{ (1+R+M)z} E,,m{(le)z}
_1 d+1H[I(J-1)—2]
R rJj:—1

. Lw((I+3)/2, IJ-1)/2)
Lem((I+1)/2, I(J-1)/2)

Substituting (3.5) and (8.6) in (2.3) we obtain that the Bayes equivari-
ant estimator of ¢!, against the above prior distribution of o is

. S I+1  Lo(I+3)/2, IT—1)2)
@7 d=pr [”I(J—l) Lan(+1)/2, I(J—l)/2+1)]'

To obtain the Bayes equivariant estimator of o2 we have to supplement
with the posterior expectation of p(1+pJ)/(1+R+pJ). Since p=((1—¢)/e)/
J we have

3.8) E {P(1+JP> }=£.IJ—3.IM«I—1)/2, I(J—1)/2—1)
AR )T T T Lal(F D2, 10—D)2-1)
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1, -3 | Lae(I+1)2, I(J-1)/2—2)

J I(J-1)—4 Lg(I+1)/2, I(J-1)/2—-1)

Substituting (3.5) and (3.8) in (2.9) we obtain that the Bayes equivari-
ant estimator of & is

(39) =8 (IJ—1)<IJ_3) { R . Lm)((I—l)/Z, I(J—l)/z_l)
YT J-0)[II-1)—-2] (I-1  L((I+1)/2, (J—1)/2+1)
1 | Le@+D/2, I(J—l)/2—2)}
I(J-1)—4 La((I+1)/2, I(J-1)2+1))°

We consider now some characteristics of the above Bayes estlmators
First, since (R)—0 as R— oo we obtain that
A ST

1 lim 8= .
(3.10) lim &= s

This is the uniformly minimum variance unbiased estimators of .
Moreover, since R~(1+pJ)((I—-1)/I(J—1))F(I—-1, I(J—1)) we can write
R=0,(p) as p—o®. Thus, the distribution function of the Bayes equiv-
ariant estimator (3.7) converges completely to that of a2*[I(J—1)]/I(J—1).
This shows that the estimator (8.7) has a mean-square-error which con-
verges to 24i/I(J—1) as p—oo. For large values of J and I=2 this is
very close to the lower bound 24%/(IJ+1) of the mean-square-error. The
Bayes equivariant estimator of o2 (8.9) behaves like the estimator

S ool

as p—oo. The mean-square-error of g3 is of order O(p?) as p— co.

To conclude the present section we bring two equivariant estimators
which are “formal” Bayes estimators, that is Bayes equivariant estima-
tors in which improper prior distribution is assumed. The first one was
derived by Tiao and Tan [9]. Let z*=d}(1+Jp). Tiao and Tan imposed
on 6=(g, p:, 7*) the improper prior distribution of Jeffery, with a o-finite
measure

dﬁ.ddg._if_ r>g¢>0
dm(6) = o T

0 otherwise ,

and arrived at the formal Bayes estimator

D For a definition of order of magnitude in probability, Op(-) and o0yh(:), see J. W.
Pratt [6].
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(3.11) s=_ S | Le(=1)2 IJ-1)2-1)
I(J-1)—-2 La((I-1)/2, I(J-1)2)

For o they proposed the formal Bayes estimator

S: R | La((I-3)/2, I(J-1)/2)

J I-3 Lx(I-1)2, I(J-1)/2)

1 . Lum(—1)/2, I(J—l)/2—-1)]
IJ-1)-2 La(I-1)2,I(J-1)2) 1

(3.12) F= [

There is some resemblance in the structure of estimators (3.9) and (3.12).

Stone and Springer [8] derived formal Bayes equivariant estimators
by applying an improper prior distribution with a o-finite measure de-
fined by

dﬂ.do.ﬂ.ﬁ T>Ue>0

(3.13) dm*(8)= T T
0 otherwise .

Their estimator of ¢ is then

S: . Lw(]2,(I(J-1)—3)/2)

(3.14) = IT-1=3 L2 IU—D—1)2) '

The estimator of o2 is
S; [ R Ln((I—2)/2, I(J—1)—1)/2)
JLI-2 L2, (I(J—1)—1)/2)

1 . Luw[2, I(J—1)—3)/2) ]
I(J-1)-3 L2, I(J-1)-1)/2) ]

(3.15) &=

Since Tiao and Tans’ estimators as well as Stone and Springer’s are only
formal Bayes equivariant, it is not necessarily true that they are ad-
missible in the class of equivariant estimators. We do not have a proof
of either admissibility or inadmissibility of these estimators. Numerical
comparison of their mean-square-error functions to those of some com-
monly used equivariant estimators (see [4]) shows that Tiao and Tan’s
estimators and Stone and Springer’s are quite inefficient. The proper
Bayes equivariant estimators (8.7) and (8.9) are at least admissible in
the class of equivariant estimators.

4. The inadmissibility of the Bayes equivariant estimators

In the present section we prove that, given any Bayes equivariant
estimator of ¢*, one can construct a non-equivariant estimator which has
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a uniformly smaller mean-square-error. This proves that all equivariant
estimators are inadmissible in the gemeral class of all estimators of <.
The proof follows a method suggested by Stein [7], and the main theo-
rem is therefore called Stein’s theorem. This theorem has been proven
previously in the paper of Klotz, Milton and Zacks [4] with only a slightly
different notation. It is reproduced here for the sake of continuity and
due to its elegance.

STEIN’S THEOREM. Let W=S:+S:+IJY?, U,=S)/W and U,=(S*+
S)IW. Let 6=(a2, p, ) designate a parameter point, and let
(4.1) , a.=Wy(U,, U,)
be an estimator of o:. If, for some 6,

4.2) P, {W¢(Ul : Uz)>7j_‘:—2} >0,

then o; is inadmissible for squared-error loss.

PROOF. According to the conditional distribution laws (1.1), (1.3) and
(1.5), and since when {(a,,---, a;), M;, M;} are given the statistics S, Si
and IJY” are conditionally independent, we obtain, from a well known
result concerning the gamma distributions that U, and U, are conditionally
independent of W, given {(a,,---,a;), M, My}.

The mean-square-error of a;=Wy¢(U, Uy) is
4.3) E{wyU,, U))—alY)
=E{E{(W¢(U,, U)—d]|(as,- -, a;, M;, M;}}
= E{E{[X[1J4+2M,+2M,)p(U,, U,) -1} |
(a'lr' t %y a’I)i Mii M’ Ul’ U;}}
=0, E{¢"(U,, Uy) (IJ+2M,+2M,) (1T +2M,+2M,+2)
—20(U;, U (LT+2M,+ 2M) +1)

=d'E {(IJ+2M+2M,)(IJ+2M+2M+2)

1 2 2
AU, U,) — .
[¢(‘ 1) IJ+2M+2Mz+2]+IJ+2M+2M+2}
Let
(4.9 U, U=min [¢(U, U), T.flrz} .
We have
1 2
4.5 U, U,)—
(4.5) @, T IJ+2M+2Mz+2]
<o, U) L i
S Y T Y e M 2 M+ 2
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for all M,, M;=0,1,.--. Hence, if we define the estimator (s})=
W¢*(U,, Uy), then the mean-square-error of (¢¥)* does not exceed that
of &; for all 6=(d?, p, #). Finally, if there exists a parameter point 6,
at which (4.2) holds, then at that point

(4.6) E,([WoX(Uy, Up)—aiF} <Ey (WU, Uy)—ail'} .
This proves that condition (4.2) is sufficient for the inadmissibility of &2.
COROLLARY. Ewvery Bayes equivariant estimator of o> is inadmissible.

PROOF. Let ¢(R)=(L+ Rf(R))/(IJ+1), where f(R) is given by (2.3).
Then, the Bayes equivariant estimator of ¢! corresponding to ¢ is Sip«(R).
We notice that if ¢.(U;, U,)=U,p((U,—U,)/U,) then the Bayes-equivariant
estimator can be written in the form W¢.(U,, U;). Moreover, Rf.(R)>0
a.s. [all 4]. Hence,

174 S? w
a7 Piweu, =P,{ : (1 ,
@7 20U, U)> IJ+2} oy +Rﬁ(R»>IJ+2}>o
for all 6.

Hence, according to the previous theorem, all Bayes equivariant estima-
tors of ¢ are inadmissible.

The method of constructing an estimator having a uniformly smaller
mean-square-error given in the proof of Stein’s Theorem cannot be ap-
plied to show that all Bayes equivariant estimators of ¢ are inadmissible.
We shall not give here a rigorous proof of the inadmissibility of these
estimators, 62, but only a heuristic indication. We argue that, even if
p is known the best equivariant estimator of ¢2, namely &3(0)=p6%(p) is
inadmissible. Indeed, the best equivariant estimator &%(p)=S%/(1J+1)-
(1+R/(1+Jp)) satisfies condition (4.6) of Stein’s theorem and is therefore
inadmissible. We conjecture that when p is unknown the Bayes equiv-
ariant estimators of ¢2 are also inadmissible.
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