SOME KNOWN RESULTS CONCERNING ZERO-ONE SETS*

MORRIS SKIBINSKY

(Received Oct. 5, 1968)

Introduction and summary

Let (χ, \mathcal{F}) be a measurable space,

$$\{Q_{\theta}\colon \theta\in \Lambda\}$$
,

a family of probability measures on \mathcal{F} which are indexed by the points of a set Λ . Denote by \mathcal{Q} , the smallest σ -field of Λ subsets relative to which all of the likelihood functions, Q(F) with F in \mathcal{F} are measurable. Suppose g to be a real valued function on Λ measurable with respect to a σ -field $\tilde{\mathcal{Q}}$ of Λ subsets that $contains \mathcal{Q}$. In [2] necessary and sufficient conditions are given for the existence of an \mathcal{F} -measurable function f on χ with the property that

$$Q_{\theta}(f=g(\theta))=1$$
 ,

respectively

- (i) for all θ in Λ ,
- (ii) for almost all θ in Λ relative to a probability measure m on $\tilde{\mathcal{G}}$.

These results are then applied to sequences of independent and identically distributed random variables whose common distribution belongs to a specified family.

In Section 2, we review the basic results of [2], with some changes in emphasis and notation. Our Lemma 1 is implicit in [2] (see the proof of Theorem 3), though not explicitly stated. In Section 3, the necessary and sufficient conditions above referred to are shown to be simple consequences of a lemma which appears in a 1954 paper by Bahadur.

Definitions and notation relating to σ -fields null sets and conditional expectation are standard.

^{*} Research carried out at Brookhaven National Laboratory under contract with the U.S. Atomic Energy Commission.

2. The results of Breiman, Le Cam, and Schwarz

For $F \in \mathcal{F}$, $G \subset \Lambda$, write

$$F \sim G$$
 if $Q(F) = I_G$; $F \sim G$ if $Q(F) = I_G[m]$.

 I_G denotes the indicator function of G. Let $\mathcal{K}(\mathcal{K}_m)$ denote the collection of all pairs (F,G) with $F\in\mathcal{F}$, $G\subset\Lambda$ such that $F\sim G$ $(F^{\infty}G)$. Regard these collections as subsets of the product of \mathcal{F} with the class of all Λ subsets, and define \mathcal{F}^* , \mathcal{F}^* $(\mathcal{F}_m^*, \mathcal{F}_m^*)$ to be the respective projections of $\mathcal{K}(\mathcal{K}_m)$ on these factor spaces. As noted in [2] each of these projections is a σ -field. We now restate, slightly modified and combined, the Theorems 1 and 2 of [2].

THEOREM 1. Let $\sigma(g)$ denote the σ -field of Λ -subsets generated by the function g on Λ . There exists an \mathcal{F} -measurable function f on χ such that (1) holds for all (almost all (m)) θ in Λ , if and only if $\sigma(g) \subset \mathcal{G}^*$ $(\sigma(g) \subset \mathcal{G}^*)$. In this case $\sigma(f) \subset \mathcal{F}^*$ $(\sigma(f) \subset \mathcal{F}^*)$.

The above result is applicable to sequences of independent, identically distributed random variables as follows. Let $\{\widehat{Q}_{\theta}:\theta\in\Lambda\}$ be a family of probability measures on a measurable space $(\widehat{\chi},\widehat{\mathcal{F}})$. Let $\widehat{\mathcal{G}}$ be the σ -field of Λ subsets generated by the $\widehat{Q}_{\cdot}(F)$, $F\in\widehat{\mathcal{F}}$. Take $\chi=\{x=(x_1,x_2,\cdots):x_i\in\widehat{\chi},\ i=1,2,\cdots\};\ X_1,X_2,\cdots$, the coordinate functions on χ ; and \mathcal{F} , the σ -field of χ -subsets which they generate. For each θ in Λ , let Q_{θ} denote the unique probability measure on \mathcal{F} relative to which the coordinate functions are independent random variables that satisfy

$$Q_{\ell}(X_{j} \in \widehat{F}) = \widehat{Q}_{\ell}(\widehat{F}), \qquad F \in \widehat{\mathcal{F}}, \ j=1, 2, \cdots.$$

With these definitions of χ , \mathcal{F} , Q_{θ} , and Λ , let \mathcal{G} , \mathcal{G}^* , \mathcal{G}_m^* , g be as already defined. Theorem 3 of [2] may now be put in the form of the following lemma and corollary.

LEMMA 1. $\mathcal{G} = \widehat{\mathcal{G}} = \mathcal{G}^*$.

COROLLARY 1. There exists an \mathcal{F} -measurable function f on \mathcal{X} such that (1) holds for all (almost all (m)) θ in Λ if and only if $\sigma(g) \subset \widehat{\mathcal{G}}$ $(\sigma(g) \subset \widehat{\mathcal{G}}[m])$.

" $\sigma(g) \subset \widehat{\mathcal{G}}[m]$ " means that to each set G of $\sigma(g)$ there corresponds a set \widehat{G} in $\widehat{\mathcal{G}}$ such that $m(G\Delta \widehat{G}) = 0$. Δ denotes divided difference.

3. Theorem one as a consequence of Bahadur's lemma

In the following we take as given a measurable space (Ω, \mathcal{A}) and a family \mathcal{P} of probability measures P on \mathcal{A} . \mathcal{B} , \mathcal{C} , and \mathcal{D} with or without affixes denote sub- σ -fields of \mathcal{A} . Against this background, the statements of Theorem 1 are seen to be special cases of a more general proposition (Corollary 2) which in turn is itself an immediate consequence of a result due to Bahadur (Lemma 2).

Let

$$\mathcal{D}^*(\mathcal{C}) = \{B \in \mathcal{B} : \exists C \in \mathcal{C} \text{ such that } P(B\Delta C) = 0, \forall P \in \mathcal{P}\}$$

$$\mathcal{C}^*(\mathcal{B}) = \{ C \in \mathcal{C} : \exists B \in \mathcal{B} \text{ such that } P(B\Delta C) = 0, \forall P \in \mathcal{P} \}.$$

These collections are easily seen to be sub- σ -fields of \mathcal{B} and \mathcal{C} , respectively. In fact

$$\mathcal{B}^*(\mathcal{C}) = \mathcal{B} \cap (\mathcal{C} \vee \mathcal{I}), \qquad \mathcal{C}^*(\mathcal{B}) = (\mathcal{B} \vee \mathcal{I}) \cap \mathcal{C}$$

where \mathcal{H} denotes the sub- σ -field of \mathcal{A} generated by the class of $[\mathcal{A}, \mathcal{P}]$ null sets and \vee denotes the smallest σ -field of subsets containing all of the sets in the collections which precede and follow it.

Let $C_0 \subset C$, then clearly

$$(2) \mathcal{C}_{0} \subset \mathcal{C}^{*}(\mathcal{B}) \Longleftrightarrow \mathcal{C}_{0} \subset \mathcal{B}[\mathcal{P}].$$

The right-hand side of (2) means that to each set of C of C_0 there corresponds a set $B \in \mathcal{B}$ such that $P(B\Delta C) = 0$ for all $P \in \mathcal{P}$.

LEMMA 2 (Bahadur [1], Lemma 7.1, p. 442). Let c and d be extended real valued constants such that $-\infty \le c < d \le \infty$; \mathcal{D}_1 , \mathcal{D}_2 , arbitrary sub-splitted of \mathcal{A} . Then

$$\mathcal{D}_1 \subset \mathcal{D}_2[\mathcal{P}]$$

if and only if to each \mathcal{D}_1 -measurable function u on Ω such that $c \leq u \leq d$, there corresponds a \mathcal{D}_2 -measurable function v such that $c \leq v \leq d$ and such that

$$u=v[\mathcal{Q}]$$
.

COROLLARY 2. Let ζ be a C-measurable function on Ω . There exists a \mathcal{B} -measurable function ξ on Ω such that

$$P(\xi=\zeta)=1$$
, $\forall P \in \mathcal{P}$

if and only if

$$\sigma(\zeta) \subset C^*(\mathcal{B})$$
.

 ξ then satisfies

$$\sigma(\xi) \subset \mathcal{B}^*(\sigma(\zeta))$$
.

We now show that the statements of Theorem 1 may be viewed as simple consequences of Corollary 2. For the first statement let $\Omega = \mathfrak{X} \times \Lambda$, $\mathcal{A} = \mathcal{F} \times \overline{\mathcal{G}}$, where $\overline{\mathcal{G}}$ is the smallest σ -field of Λ -subsets containing $\widetilde{\mathcal{G}}$ and the singleton subsets of Λ . Let $\mathcal{B} = \mathcal{F} \times \{\phi, \Lambda\}$, $\mathcal{C} = \{\phi, \chi\} \times \widetilde{\mathcal{G}}$ and define X and Θ on Ω by $X(x, \theta) = x$, $\Theta(x, \theta) = \theta$. Define the probability measure P_{θ} on \mathcal{A} for each θ in Λ by

$$P_{\theta}(\Theta = \theta) = 1$$
 , $P_{\theta}(X \in F) = Q_{\theta}(F)$, $\forall F \in \mathcal{F}$

and take

$$\mathcal{Q} = \{P_{\theta} : \theta \in \Lambda\}$$
.

We need only note that there can exist an \mathcal{F} -measurable function f on χ such that (1) holds for all θ in Λ if and only if

$$P(fX=g\Theta)=1$$
, $\forall P \in \mathcal{P}$.

By Corollary 2, this is true if and only if $\sigma(g\Theta) \subset C^*(\mathcal{B})$. But in the present case

$$\sigma(g\Theta) = \chi \times \sigma(g)$$
 and $C^*(\mathcal{B}) = \chi \times \mathcal{G}^*$

so that the statement follows. For the second statement of Theorem 1 take $\mathcal{A}=\mathcal{F}\times\tilde{\mathcal{G}}$; Ω , \mathcal{B} , \mathcal{C} , X, and Θ , as above. Let \mathcal{P} consist of a single probability measure P on \mathcal{A} where P is uniquely defined on \mathcal{A} (e.g. see [3], p. 137) by the two properties: (i) $P(\Theta\in G)=m(G)$, $\forall G\in \tilde{\mathcal{G}}$, (ii) $Q_{\theta}(F)$ (for each F in \mathcal{F}) is a version of $E_{P}(I_{X\in F}\mid \mathcal{C})$. Thus, there can exist an \mathcal{F} -measurable function f on χ such that (1) holds for almost all θ in Λ relative to m if and only if

$$E_P(I_{fX=g(heta)}\,|\,\mathcal{C})\!=\!1[\mathcal{C},P]$$
 ,

i.e. if and only if

$$P(fX=g\Theta)=1$$
.

Here also we have that

$$\sigma(g\Theta) = \chi \times \sigma(g)$$
 and $C^*(\mathcal{B}) = \chi \times \mathcal{G}_m^*$

so that the statement is a consequence of Corollary 2.

University of Massachusetts, Amherst, Massachusetts

REFERENCES

- [1] R. R. Bahadur, "Sufficiency and statistical decision functions," Ann. Math. Statist., 25 (1954), 423-462.
- [2] L. Breiman, L. Le Cam and L. Schwartz, "Consistent estimates and zero-one sets," Ann. Math. Statist., 35 (1964), 157-161.
- [3] M. Loeve, Probability Theory (2nd edition), Van Nostrand, New York, 1960.