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1. Introduction

E. Hopf proved that the boundedness of a measurable transformation
is a necessary and sufficient condition for the existence of a finite meas-
ure which is invariant under the transformation [3]. A. B. Hajian and
S. Kakutani proved that the non-existence of a weakly wandering set
of positive measure is also a necessary and sufficient condition [1]. It
is obvious that the boundedness implies the non-existence of a weakly
wandering set of positive measure. The purpose of this note is to prove
directly that if there exists no weakly wandering set of positive measure,
then the transformation is bounded. This problem was raised by Louis
Sucheston as one of open problems [4]. As E. Hopf’s condition is proved
without Banach limit, by Theorem 2 we have another proof of A. B.
Hajian and S. Kakutani’s condition without Banach limit. So almost all
propositions on the subject can be obtained without the axiom of choice.

2. Definition and lemmas

Let T be a non-singular bi-measurable transformation of a prob-
ability measure space (2, B, m) onto itself. From now on we fix (2,5,
m) and T. A measurable set B is said to be equivalent to a measurable
set B’ (notation; B~B’), if there exist two decompositions {B;} and {B/}
(1=1,2, ---) of B and B’ respectively and a sequence {n;} (:=1,2, :--)
of integers such that T™B,=B] (1=1,2, ---). (B; or B} can be empty
for some natural number 7.) A measurable set B is said to be a weakly
wandering set, if there exists a sequence {n;} (1=1,2, ---) of integers
such that T»BNTYB=¢ (i#Jj). A measurable set B is said to be
bounded, if m(B—B')=0 for any measurable set B’ with B'~B and
B'cB. The transformation T is said to be bounded, if the whole space
2 is bounded.

The following lemmas are due to [1].
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LEMMA 1. Let (2,8, m) be a finite measure space and 2 be a non-
negative monotonic and subadditive set function defined on (2,B). If a
measure m 1s absolutely continuous with respect to A then m is uniformly
absolutely continuous with respect to 2, i.e., for any &>0, there exists
0>0 such that m(B)<e for any measurable set B with A(B)<a.

LEMMA 2. If there exists no weakly wandering set of positive meas-
ure, then the following condition (E.C.) holds.

(E.C.) For any >0, there exists >0 such that if B is a measurable
set with m(B)<d, then m(T"B)<e (n=0, £1, £2, --.).

If this condition (E.C.) holds, we say that {m,} is equi-uniformly
absolutely continuous with respect to m, where m,(4)=m(T"A4) (n=0,
+1, +2, .- )

3. Results and their proofs
We put mu(A)=m(T"A) (n=0, +1, +2, ---), a,,(A)=%ﬂi m(T*A4)
k=0

and ¢(4A)=lim sup ¢,(4).

LEMMA 3. Let {m,} (n=0, 1, £2--.) be equi-uniformly absolutely
continuous with respect to m and A be a measurable set. Assume that
Jor any >0, there exists a measurable set B with B~A and m(B)<e.
Then we have m(A)=0.

PROOF. Let ¢ be an arbitrary positive number. From the assump-
tion of the equi-uniform absolute continuity, there exists >0 such that
if m(F)<d, then ¢(E)<e. For this , there exists a measurable set B
with B~A and m(B)<d. Therefore we have a countable decomposition

{A;} of A such that gm(T”iA,-)<6 and THA,NTYA;=¢ (i+7). We
choose a natural number k such that m(A—- G Ai><6. Then we have
i=1

a(A—iLkJ Ai> <e and a(lI_CJ T"iAi) <e.
=1 i=1

Noting that ¢ is a subadditive and monotonic set function and the equali-
k k

ty a<U T"iAi)=a<U Ai>, which will be shown immediately later, we
i=1 i=1

have ¢(A)<2:. Hence, as ¢ is an arbitrary positive number, o(4)=0.
If m(A)>0, then from the equi-uniform continuity there exists 6>0
such that m(T"A4)>dé (n=0, £1, +2, --.). Then we have ¢(A)=4, which
is a contradiction.
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PROOF OF THE EQUALITY. U(;} T"iAi>=o(tG A¢> (ANA;=9,
=1 =1
TA,NT%A,=¢ (i#7)). From the definition of s, we have

k A k k

70 T4y a0 A | s 21l
i=1 i=1 i=1

We obtain easily the equality from this.

THEOREM 1. If {m,} (n=0, 1, +2, ---) is equi-uniformly absolute-
ly continuous with respect to m, then the transformation T is bounded.

ProoF. It is sufficient to show the following: m(A—B)=0 for any
two measurable sets A, B with A~B and ADB. Now we fix a de-

composition {A4;} of A such that B= U T™A, and A= U A,. We define
a transformation S of A into itself by

So=T"w (f weA).

It is easy to verify that S is a one-to-one non-singular bi-measurable
transformation of A onto B=SA. We have

lim m(S"E)=0, where E=A—SA.
From the definition of S, the set E is equivalent to S"E (n=0,1,2, ---).
By Lemma 3, we conclude m(E)=0, which completes the proof.
Since it is obvious that the boundedness of T implies the non-
existence of a weakly wandering set of positive measure, Lemma 2 and
Theorem 1 yield the following conclusion.

THEOREM 2. The following three conditions are equivalent.

(1) There exists mo weakly wandering set of positive measure.

(2) {m,} (n=0, £1, 2, ---) s equi-uniformly absolutely continuous
with respect to m.

(8) T is bouded.

THEOREM 3. The following conditions are equivalent.
(1) {m,} n=0, £1, £2, --.) is equi-uniformly absolutely continuous
with respect to m.
(2) For any >0, there exists 6>0 such that if m(B)<3d, then m(B’)<e
for any measurable set B' with B ~B.

PrOOF. Since the condition (1) is obviously implied by (2), we prove
that (2) is satisfied if (1) holds. Assume that the condition (1) holds
but the condition (2) does not hold. Then there exists §>0 such that
for any >0, there exist two measurable sets B, B’ with B~B’, m(B)>d
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and m(B)<e. From the proof of Lemma 8, we conclude ¢(B)<¢/, where
¢’ tends to 0 when ¢ tends to 0. (Note that ¢ and ¢ play the same role
with 6 and 2¢ in the proof of Lemma 3 respectively.) This means that
the measure m is not uniformly absolutely continuous with respect to
the non-negative monotonic and subadditive set function ¢. Consequently
there exists a measurable set A such that ¢(4)=0 and m(4)>0 (Lem-
ma 1). But this is a contradiction to the condition (1).
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