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Summary

If X, Y, Z are three random observations from a normal popula-
tion with mean zero then the characteristic function of (X/Z,Y/Z) is
exp (—+ 8+ u?). It is shown in this paper that this property character-
izes the normal law.

Let X;, X; be two independent normal variates with zero mean and
common variance. It is then well-known that the quotient X;/X; follows
the Cauchy law distributed symmetrically about the origin. It is also
well-known that we cannot obtain a characterization of the normal dis-
tribution by this property of the quotient [1]. A characterization of
the generalized normal law (g.n.l.), that is, a distribution with frequency
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(and hence the usual normal law) has been obtained in [2] where the
following is proved: If X, X, X,, --- are independent observations from
a population with a distribution function F(x) assumed to be continuous

. . 1/& .
at =0 and if the frequency function of t,=X / \/ -k—(; Xf) is
=1

r(aten)

@rE)r(%)

then necessarily X will have the frequency function f(x) defined in (1).
The object of this paper is to obtain a new characterization of the
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g.nl. in terms of three independent observations from the population.
Of course, when n=1 our characterization will be that of the ordinary
normal law.

LEMMA 1. If X follows a g.n.. then the characteristic function
(c.f.) of log| X| can mever vanish.

Proor. If possible, let the c.f. of log|X| vanish at a point w,
that is,

— ® ) n—1 — an
O—So exp {tw log x} exp{ oot }dm.

The transformation x*=2¢*/n-ay, a>0 yields
0=Swexp {i-';ilog y}y"’z" e Vdy for all «>0.
[

This identity in a contradicts the completeness of the family of
frequency functions e **, =0, a>0. Hence the lemma.

COROLLARY. If Z follows the generalized Cauchy law (g.c.l.) given by

—_ P(n) n—1 2\—n .
Zy=—""_\Z 1+ 7 , —co<LZ<oo, nxl
9(Z) (I’(n/2))2! "1+ 2ZY) <Z<oo, m

then the c.f. of log|Z| does mot vanish.

PRrROOF. Observe first that if X,, X; are independently distributed
according to g.n.l. then their ratio is distributed according to g.c.l.
Therefore distributionally Z can be conceived of as the ratio of two
independent g.n.l.’s. Hence the c.f. of log|Z| has the form |m(t)|*
where m(t) is the c.f. of log|X|, X being a random variable following
g.n.l. That m(t) does not vanish has been established in Lemma 1.
The assertion of the corollary now follows.

LEMMA 2. If X, X;, X, are independent random variables and if
the joint c.f. of (X,—X;, X,—X;) does mot vanish, then it determines the
distribution of the variables X,, X, and X; except for additive constants.

Note that the assumption that the joint c.f. of (X;—X;, X;—X))
does not vanish implies and is implied by the assumption that the c.f.’s
of the variables X,, k=1, 2,3 do not vanish.

Proor. Let ¢.(t), k=1,2,3 denote the c.f. of X, k=1,2,3 and
let &(t;, t;) denote the joint c.f. of (X,—X;, X;—X;):
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§(t1 N tz) = E{e“lxl"‘“zxz+i(—tl—zz)xs}
=G(EotI(—ti—t),  —co<ty, h<oo .

Let Y,,Y,, Y; be any other set of independent random variables such
that the c.f. of (Y,—Y;, Y,—Y;) is &(¢,, t,) defined earlier. Let ¢,(t), k=
1,2,3 be the c.f. of Y,, k=1,2,3. Hence ¢ (t)duts)ds(—ti—t:)=i(t,)
(t)ds(—t—t;). From the assumption that &(¢,t¢,) does not vanish it
follows that none of the c.f.’s ¢.(t), ¢i(t), k=1, 2,8 vanish. Writing
D) =Qu(t)pu(t), k=1,2,3 so that Q.(t), k=1,2,3 is a complex valued
function defined for —oo<t< oo, non-vanishing and satisfying Q,(0)=1,
k=1,2, 3, we get

( 2 ) Ql(tl)Q2(t2)Q8( —t— tz) =1.

Putting ¢,=t, t,=0, we get Q,(t)=1/Q;(—1).
Putting ¢,=0, t,=t, we get Qyt)=1/Qy(—1).
Therefore

1

( 3 ) Ql(t) =Q2(t) =m .

Substituting in (2) we get
st 1) =Qu(t)Qs(Ly) , —oo<Lt, ;<o

The most general function Qs(f) continuous on the whole line —oo <t < oo,
non-vanishing and satisfying the condition Q4(0)=1 is the exponential
function Q(t)=e®, —co<t< oo for some b, a complex number.

From (3) we obtain

Ql(t) = Qz(t) = Qa(t) =e.
Thus we have
dt)=e"g(t) , k=1,23.

Using the property of the c.f.’s ¢(—t)=¢(t) (complex conjugate), we
see that ¢.(t)=e¢" @, (t), k=1, 2,3 for some real ¢. Hence the assertion.

3.

Let (t) be the c.f. of log| X| where X follows g.n.l. with o=1.
Recall that x(t) is non-vanishing. Let G(x,y) be the joint distribution
of (Xi/X;, X;/X;) where X, X;, X; are independent observations on X.
Notice that the joint c.f. of (log{|Xi|/| X;|}, log{| X;|/| X;|}) is %(¢)

p(—t—u)p(u).
THEOREM. Let Z,, Z,, Z; be three independent symmetric (about the
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origin) random variables with distribution functions continuous at zero.
Then they all follow the g.n.l. if and only if the bivariate distribution
Junction of (Z,/Z;, Z,]Zy) is G.

PrOOF. Observe that the specification of the distribution of log|Z,|,
k=1, 2,3 determines the distribution of | Z,|, k=1,2,3. Therefore, be-
low we show that under the conditions mentioned in the theorem the
distribution of log|Z,|, k=1, 2,3 is uniquely determined except for an
additive constant which is same for all the variables.

Suppose Z,, Z,, Z, satisfy the conditions of the theorem. Hence the
joint c.f. of (log{|Z1/|Z), log (1 Z:1/1Z,])) is n@®)p(—t—whp(w). If 6,(¢)
is the c.f. of log| Z,|, k=1, 2, 3, then we get

0,(0)0:(u)0s(—t —w)=7()yp(u)n(—t—u) .

Then 6,, ,, 6, are non-vanishing. That the claim now follows from Lem-
ma 2 is seen by taking log|Z.|=X,, k=1, 2, 3.

Note 1. If in the theorem the variables Z;, Z;, Z; are assumed to
be identically distributed then the assumption of symmetry of their
common distribution is not necessary. This property can be derived as
a consequence of the fact that the distribution of Z,/Z, is symmetric
about the origin (c.f. [1]).

Note 2. Taking m=1 one observes that the c.f. of G(x,¥) is
exp (—vt*+wu?). Thus the joint c.f. of (Z,/Z;, Z:/Z;) is exp (—vViE*+u?) iff
Z,, Zy, Zy follow the same normal law.
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