A CHARACTERIZATION OF THE NORMAL LAW

R. P. PAKSHIRAJAN AND N. R. MOHAN

(Received Oct. 22, 1968; revised July 23, 1969)

Summary

If X, Y, Z are three random observations from a normal population with mean zero then the characteristic function of (X/Z, Y/Z) is $\exp(-\sqrt{t^2+u^2})$. It is shown in this paper that this property characterizes the normal law.

1.

Let X_1 , X_2 be two independent normal variates with zero mean and common variance. It is then well-known that the quotient X_1/X_2 follows the Cauchy law distributed symmetrically about the origin. It is also well-known that we cannot obtain a characterization of the normal distribution by this property of the quotient [1]. A characterization of the generalized normal law (g.n.l.), that is, a distribution with frequency function

$$(1) f(x) = \frac{\left(\frac{n}{2}\right)^{n/2}}{\Gamma\left(\frac{n}{2}\right)\sigma^n} |x|^{n-1} e^{-x^2n/2\sigma^2}, -\infty < x < \infty, n \ge 1$$

(and hence the usual normal law) has been obtained in [2] where the following is proved: If X, X_1, X_2, \cdots are independent observations from a population with a distribution function F(x) assumed to be continuous at x=0 and if the frequency function of $t_k=X\Big/\sqrt{\frac{1}{k}\Big(\sum\limits_{i=1}^k X_i^2\Big)}$ is

$$\frac{\Gamma\!\left(\frac{n(k\!+\!1)}{2}\right)}{\left(\frac{n}{k^2}\right)\!\Gamma\!\left(\frac{n}{2}\right)\!\Gamma\!\left(\frac{kn}{2}\right)}\!\mid\!x\!\mid^{n\!-\!1}\!\left(1\!+\!\frac{x^2}{k}\right)^{-n(k\!+\!1)/2}\qquad -\!\infty\!<\!x\!<\!\infty,\ n\!\ge\!1$$

then necessarily X will have the frequency function f(x) defined in (1). The object of this paper is to obtain a new characterization of the

g.n.l. in terms of three independent observations from the population. Of course, when n=1 our characterization will be that of the ordinary normal law.

2.

LEMMA 1. If X follows a g.n.l. then the characteristic function (c.f.) of $\log |X|$ can never vanish.

PROOF. If possible, let the c.f. of $\log |X|$ vanish at a point w, that is,

$$0 = \int_0^\infty \exp\left\{iw\log x\right\} x^{n-1} \exp\left\{-\frac{nx^2}{2\sigma^2}\right\} dx.$$

The transformation $x^2 = 2\sigma^2/n \cdot \alpha y$, $\alpha > 0$ yields

$$0\!=\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty} \exp\left\{irac{w}{2}\log y
ight\}\!y^{\scriptscriptstyle n/2-1}e^{-lpha y}dy \qquad ext{for all }lpha\!>\!0 \;.$$

This identity in α contradicts the completeness of the family of frequency functions $e^{-\alpha x}$, $x \ge 0$, $\alpha > 0$. Hence the lemma.

COROLLARY. If Z follows the generalized Cauchy law (g.c.l.) given by

$$g(Z) = \frac{\Gamma(n)}{(\Gamma(n/2))^2} |Z|^{n-1} (1+Z^2)^{-n}, \quad -\infty < Z < \infty, \quad n \ge 1$$

then the c.f. of $\log |Z|$ does not vanish.

PROOF. Observe first that if X_1 , X_2 are independently distributed according to g.n.l. then their ratio is distributed according to g.c.l. Therefore distributionally Z can be conceived of as the ratio of two independent g.n.l.'s. Hence the c.f. of $\log |Z|$ has the form $|m(t)|^2$ where m(t) is the c.f. of $\log |X|$, X being a random variable following g.n.l. That m(t) does not vanish has been established in Lemma 1. The assertion of the corollary now follows.

LEMMA 2. If X_1, X_2, X_3 are independent random variables and if the joint c.f. of (X_1-X_3, X_2-X_3) does not vanish, then it determines the distribution of the variables X_1, X_2 and X_3 except for additive constants.

Note that the assumption that the joint c.f. of (X_1-X_3, X_2-X_3) does not vanish implies and is implied by the assumption that the c.f.'s of the variables X_k , k=1, 2, 3 do not vanish.

PROOF. Let $\phi_k(t)$, k=1, 2, 3 denote the c.f. of X_k , k=1, 2, 3 and let $\xi(t_1, t_2)$ denote the joint c.f. of (X_1-X_3, X_2-X_3) :

$$\begin{split} \xi(t_1, t_2) &= E\{e^{it_1X_1 + it_2X_2 + i(-t_1 - t_2)X_3}\} \\ &= \phi_1(t_1)\phi_2(t_2)\phi_3(-t_1 - t_2) , \qquad -\infty < t_1, t_2 < \infty . \end{split}$$

Let Y_1, Y_2, Y_3 be any other set of independent random variables such that the c.f. of (Y_1-Y_3, Y_2-Y_3) is $\xi(t_1, t_2)$ defined earlier. Let $\phi_k(t), k=1,2,3$ be the c.f. of Y_k , k=1,2,3. Hence $\phi_1(t_1)\phi_2(t_2)\phi_3(-t_1-t_2)=\phi_1(t_1)\phi_2(t_2)\phi_3(-t_1-t_2)$. From the assumption that $\xi(t_1,t_2)$ does not vanish it follows that none of the c.f.'s $\phi_k(t)$, $\phi_k(t)$, k=1,2,3 vanish. Writing $\phi_k(t)=Q_k(t)\phi_k(t)$, k=1,2,3 so that $Q_k(t)$, k=1,2,3 is a complex valued function defined for $-\infty < t < \infty$, non-vanishing and satisfying $Q_k(0)=1$, k=1,2,3, we get

$$(2) Q_1(t_1)Q_2(t_2)Q_3(-t_1-t_2)=1.$$

Putting $t_1=t$, $t_2=0$, we get $Q_1(t)=1/Q_3(-t)$. Putting $t_1=0$, $t_2=t$, we get $Q_2(t)=1/Q_3(-t)$. Therefore

(3)
$$Q_{1}(t) = Q_{2}(t) = \frac{1}{Q_{3}(-t)}.$$

Substituting in (2) we get

$$Q_3(t_1+t_2)=Q_3(t_1)Q_3(t_2)$$
, $-\infty < t_1, t_2 < \infty$.

The most general function $Q_3(t)$ continuous on the whole line $-\infty < t < \infty$, non-vanishing and satisfying the condition $Q_3(0)=1$ is the exponential function $Q_3(t)=e^{it}$, $-\infty < t < \infty$ for some b, a complex number.

From (3) we obtain

$$Q_1(t) = Q_2(t) = Q_3(t) = e^{bt}$$
.

Thus we have

$$\phi_k(t) = e^{bt}\phi_k(t)$$
, $k=1, 2, 3$.

Using the property of the c.f.'s $\phi(-t) = \overline{\phi}(t)$ (complex conjugate), we see that $\phi_k(t) = e^{ict}\phi_k(t)$, k=1,2,3 for some real c. Hence the assertion.

3.

Let $\eta(t)$ be the c.f. of $\log |X|$ where X follows g.n.l. with $\sigma=1$. Recall that $\eta(t)$ is non-vanishing. Let G(x,y) be the joint distribution of $(X_1/X_3, X_2/X_3)$ where X_1, X_2, X_3 are independent observations on X. Notice that the joint c.f. of $(\log \{|X_1|/|X_3|\}, \log \{|X_2|/|X_3|\})$ is $\eta(t)$ $\eta(-t-u)\eta(u)$.

THEOREM. Let Z_1, Z_2, Z_3 be three independent symmetric (about the

origin) random variables with distribution functions continuous at zero. Then they all follow the g.n.l. if and only if the bivariate distribution function of $(Z_1/Z_3, Z_2/Z_3)$ is G.

PROOF. Observe that the specification of the distribution of $|Z_k|$, k=1, 2, 3 determines the distribution of $|Z_k|$, k=1, 2, 3. Therefore, below we show that under the conditions mentioned in the theorem the distribution of $\log |Z_k|$, k=1, 2, 3 is uniquely determined except for an additive constant which is same for all the variables.

Suppose Z_1 , Z_2 , Z_3 satisfy the conditions of the theorem. Hence the joint c.f. of $(\log \{|Z_1|/|Z_3|\}, \log \{|Z_2|/|Z_3|\})$ is $\eta(t)\eta(-t-u)\eta(u)$. If $\theta_k(t)$ is the c.f. of $\log |Z_k|$, k=1,2,3, then we get

$$\theta_1(t)\theta_2(u)\theta_3(-t-u) = \eta(t)\eta(u)\eta(-t-u)$$
.

Then $\theta_1, \theta_2, \theta_3$ are non-vanishing. That the claim now follows from Lemma 2 is seen by taking $\log |Z_k| = X_k$, k=1, 2, 3.

Note 1. If in the theorem the variables Z_1 , Z_2 , Z_3 are assumed to be identically distributed then the assumption of symmetry of their common distribution is not necessary. This property can be derived as a consequence of the fact that the distribution of Z_1/Z_2 is symmetric about the origin (c.f. [1]).

Note 2. Taking n=1 one observes that the c.f. of G(x, y) is $\exp(-\sqrt{t^2+u^2})$. Thus the joint c.f. of $(Z_1/Z_3, Z_2/Z_3)$ is $\exp(-\sqrt{t^2+u^2})$ iff Z_1, Z_2, Z_3 follow the same normal law.

Acknowledgement

The authors thank the referee for his kind suggestions and comments which led to a refinement of an earlier version of the paper.

University of Mysore, India

References

- [1] R. G. Laha, "On a class of distribution functions where the quotient follows the Cauchy law," Trans. Amer. Math. Soc., 93 (1959), 205-215.
- [2] R. P. Pakshirajan and M. Sudhakara Rao, "On the generalized law of Cauchy and Gauss," Mysore University Journal, 1967.