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1. Summary

Consider the class of general incomplete multiresponse (GIM) designs
in which the set of units is divided into blocks of equal size, such that
in any block the same subset of responses is measured on each unit. It
is shown that with respect to the trace criterion and a reasonable cost
restriction, the subclass of hierarchical multiresponse (HM) designs is
complete in the sense that given any GIM design, there exists an HM
design such that the cost involved under the two designs is the same,
but the trace of the covariance matrix of the estimates of the parame-
ters under the HM design is less than or equal to the similar quantity
under the GIM design. Our results also establish the important fact
that there is a large class of situations where the standard multiresponse
model (under which all responses are measured on each unit) should not
be used. Furthermore, the nonlinear programming problem associated
with obtaining the optimum HM design is stated and solved.

2. Introduction and preliminaries

Responsewise incomplete multiresponse experiments are needed when
it is either physically impossible, uneconomic, or otherwise inadvisable
to study all responses or characteristics on each experimental unit. For
a review of the literature on incomplete multiresponse designs, the in-
terested reader is referred to the illustrative (though necessarily inex-
haustive) list of references at the end.

Consider a multiresponse experiment with p responses (say Vi, ---,
V,), v treatments (say 7, --+,7,) and a set S* of experimental units.
Suppose further that S* is divided into a set S of blocks such that each
block is of size v and such that each block contains a set of units homo-
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genous with respect to each response. For any subset of k responses
(say Vi, -+, Vi), 1=k=p, let S(i, ---, 1) denote the subset (possibly
empty) of S, such that for any block Be S(, ---, %), and any unit
Ue B, the set of responses measured on U is exactly (V,, ---,V,). Such
a design may be called a general incomplete multiresponse randomized
block (GIM(RB)) design. Let U,={S(i, ---, %) |7 € (%, ---, %)} denote
the totality of all blocks such that response V, is measured on each unit
of each such block. If there exists a permutation (7, -+, 7,) of (1,2,
- -+, p) such that U, 2U, 2---2U,,, then the above GIM(RB) design will
be called a hierarchical multiresponse randomized block (HM(RB)) design.

Let 7, (j=1,---,v; r=1,---, p) denote the “true effect” of the
treatment z; for the response V,. Suppose U, has n, blocks in it. Con-
sider ¥,,, the mean of the n, “observed yields” of the jth treatment
from these m, blocks. Assume all the units of S* to be independent.
Also let g,, denote the variance of an observation on the rth response
V, on any unit (same for all units), and ¢,, the covariance between the
observations on V, and V,. Consider the quantity

@.1) Q=(—1) Z o, /n, .

To interpret Q, first recall that for any response V,, only linear
contrasts of the form <éuj,rj,) with <5v‘_.u,-,=0> are estimable. Con-
j=1 Jj=1
sider the set of (v—1)p linear functions (20_‘, u,,iz-,,>, (r=1,2,.--,p; i=
=1
1, .-, (v—1)), with

(2.2) ]glujn;_:o N Euj,iujrir=0 (’i¢i,),

for all permissible », ¢« and 7'.

It is well known that the estimate <éumyﬁ> of <éumrﬂ> is
free from block effects. Let V denote thje— ('v—l)px(v—lj)_p variance-
covariance matrix of the set of all estimates (é uj,iﬂj,>, (r=1,---, p;
i=1, .-+, (v—1)). Then it can be checked that J_l

2.3) Q=trV.
This shows that @ depends only on the GIM(RB) design used (indeed,
only on the integers =, ---, n, arising from the design) and not on any

particular values of u,,; so long as (2.2) is satisfied, i.e. so long as any
maximal set of orthogonal contrasts is used. The value of @ correspond-
ing to any GIM(RB) design D could be denoted by @Q(D). Then, (2.3)
gives a method of comparing two designs D and D*. Thus, we may say
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D* is better than D w.r.t. the ‘trace criterion’ if Q(D*)<Q(D).

Now, given a design D, we can clearly obtain D* such that Q(D*)<
Q(D), by just increasing the m,. However, in practice this cannot be
done since only a limited number of units may be available. In other
words, the cost consideration comes in. Thus, let ¢, denote the initial
cost of making available one block of v experimental units, and ¢.(r=
1, -+, p) the cost of measuring the response V, on all the v units of any
block. Then, clearly, for any GIM(RB) design D, the associated cost
¢(D) is given by

(2.4) D)=+ Pt -+ Py,
where m, is the number of distinct blocks in D (if D is hierarchical then
ny=max (n, * -+, Ny)).

For any ¢'>0, let {¢'} denote the class of all GIM(RB) designs D
such that ¢(D)<¢'. Thus, if a total sum of money ¢’ is given, then
we must choose a design from {¢'}. At this stage, a good basis of
choice may be provided by the above trace criterion. This motivates

DEFINITION 2.1. A design D* ¢ {¢'} is defined to be at least as
good as D¢ {¢'} relative to the trace criterion if

(2.5) HD*=¢(D) and QD¥)=QD);

if one of the inequalities is strict, D* is said to be better than D.

In the following sections, we consider the problem of selection of
the best design in {¢'}. Also, D(ny; ny, -+, n,) will indicate a GIM(RB)
design with n,(1=0, - - -, p) being as above.

3. Optimality of HM(RB) designs
Let D, D* € {¢'} where

(3.1a) D=D(ny; N1y ** *5 Np)
(3.1b) D*=D(n20;n21’ ct an) ’
where n,, are positive integers, and n,=max (n,, - -+, n;). Then, from

(2.1) and (2.4), it follows that D* is at least as good as D if (ny, «-+, ny)=
(Mg, =+ +, Map) and 7,=ny.

DEFINITION 3.1. Let [¢'] be the subclass of HM(RB) designs con-
tained in the class {¢’'}. Then [¢'] is said to be complete w.r.t. {¢'} if,
for any D¢ {¢'}, there exists a D*€[¢/] such that D* is at least as
good as D.

THEOREM 3.1. The subclass [¢'] is complete w.r.t. {¢'}.
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ProOF. Let D¢ {¢'}. Consider the p-tuple, (ny, ---,ny), and or-
der the elements such that (say) My 2Ny =+ + 2ZNy,. WeE can assume,
without loss of generality, that ,=1, ---,7,=p. Construct the design
D* ¢ [¢'] in the following manner. First select any subset U*, contain-
ing m, blocks of the n, blocks in D, and measure response V, on these
blocks. Note that n,<n,. Select any subset U*, containing 7, blocks
of U*, and measure response V, on these blocks; and so on. Finally,
select any subset U}, containing n,, blocks of U};, and measure re-
sponse V, on these blocks. Thus D*=D(ny; ny, Ny, - -+, ny,) € [¢'], and
by the above discussion, D* is at least as good as D. This completes

the proof.

Theorem 3.1 clearly points out that in designing multiresponse RB
experiments (where it is possible to measure any response on any ex-
perimental unit, but resources are limited), one need consider only
HM(RB) designs.

4. Determination of the optimum HM(RB) design

To obtain the optimal design we assume that the variances (oy, - - -,
6,p) are known (in practice ‘a priori’ estimates of gy, -+, g,, Will have
to be used), and that the ‘costs’ (¢y; ¢, -+, ¢,) are given. In order to
find the optimum design D*, the problem is to minimize the nonlinear
function Q(D) subject to the linear restraints.

(4.1) ¢"=,-é;o ¢'rnr N ’nog’n,.go, (’r:]_, cee, p) .

We are thus faced with a nonlinear programming problem, with the
r.h.s. of (2.1) as the objective function, and (4.1) as the constraints.
Further, the n, must be positive integers. We however ignore this here
and assume that the optimal n, will be rounded off to integral values.

Let D* be the optimal design. (The uniqueness of the optimal de-
sign is a consequence of the convexity of the objective function in this
problem.) Let the values of (ny, n,, - -+, n,) for D* be (my, my, - - -, m,).
Since D* is a HM(RB) design, we have m,=max (m,, - -, m,).

THEOREM 4.1. If aylo,;=¢./¢;, thenm in D*, we must have
m=m,, (7'5&.7)’ (’L,j=1, D).

ProOF. Assume that m,>m,, and consider first the case where
my,>m;. Select m* such that

“4.2) (eu/m)+(o;5/m ;)= (os+0a;5)[m* .

Thus if we form a new design D’ with the same m’s as in D* but with
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m,; and m, replaced by m*, we have that @D*)=Q(D'). Also
(4.3) YD*)— YD) =dpimi+ mn— (b + P ym*.

This difference is positive if and only if

(4.9 (@it9) (outa;) (oulmitoy/m ) < pamet-gym; .

Using the assumption that (m;—m,) is negative we find that inequality
(4.8) is equivalent to

4.5) mym; <P 0u/Pi0y; .

Since m,/m,<1 by assumption, and o/s;;=¢,/¢; implies ¢;0./P.0,,21,
we find that ¢(D*)>¢(D’). Since QD*)=Q(D’), this implies that D’ is
better than D*, which is a contradiction since D* was supposed to be
optimum. Hence in this first case, we have m,=m;.

Next, assume that m,=m,>m,. Again select m* as in equation
(4.2). Forming D’ as before, we have QD*)=Q(D’). However, the
difference in the costs is now given by

(4.6) Y(D*)—H(D') = pemo+ pimi+d,m;— domif —($i+$)m*

where m¥=max (m*, m,, «-+, My, Myyy, =+, M;_y, My, =+, My). But,
m,=max (m,, m,, - - -, m,) and m*<max (m,, m;). Therefore m§=<m, and
the difference in (4.6) is positive if

4.7) (pemi+gymy) > (Pt )m* .

Inequality (4.7) is the same as inequality (4.4), and the proof is com-
pleted by using the same argument as above.

We now have a method of finding out the order between the m’s
of the optimum HM(RB) design D*. Indeed, m,<m, if o./e;;<¢/¢; and
m;=m, otherwise. Thus, we can establish that in D* we have (say):

My=TMy ZMy =+ Z My, where (i,, - -+, 1,) is some permutation of (1,2,
-+, p). In the following we will assume, without loss of generality, that
(4'8) aii/ajjggbilgbj ’ (i<j)v (’i9 j:l’ Tty p) ’

and hence my=m;=m,=-++ZM,.

THEOREM 4.2. Let k be the smallest integer in the set 2, - - -, p such
that

4.9) of iJoun >l and  oF /ot i1 SO e/ Per

where

(4-10) 0:“=0'u+ ceedoy, ‘/’?‘=¢’o+¢1+ te +¢i ’ ('i=1, Tty I’) .
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Then My=Mmy=-+ -+ =’mk_1>’mk_2 e zmp.

ProoF. The second inequality of (4.9) implies that

(4.11) Out - o g3t Tepi L Ok—1,k-1
Ok—1,k-1 O—2,k—2

< ¢0+ e +¢k—s+¢’k—2 . ¢'k—1

N 9bk-1 5[’1:-2
since by the assumption (4.8), 6_111/0r_51-s=¢s_1/¢s_:. Thus
(4.12) O )0k 2,12 SPF s/ P -
Continuing in a similar manner we find that
(4-13) O'ik/o'zz §¢ik/¢z, AR a';ck—s/o‘k—&k-ZéSbl’f—s/Sbk—Z .

Under the assumption that m,>m,, we have

(414 ¢DY=gim+3gm, and QD¥)=(r—1) 3 oumi*

Thus, by Cauchy’s inequality,

(@15)  gD-QDN=—1)(grm+ 3} gom) (3] oumi?)
20— 1) (Y FFou +3 Vo )

the lower bound being attained when v ¢fm, =ave,/m,, vom,=ave,Jm;,
(t=2, ---, p), where a is an arbitrary constant. We must select « such
that the “cost equation” in (4.14) is satisfied, i.e.

(4.16) a=77'¢(D*),

where

(4.17) r=+ gFoy +ii‘.;2 Vo -

Thus,

(4.18)  m=veu gDNIVIFr, mi=vVe,yDNIV i 1,

(7':1’ R p) .

From (4.18), m;>m, is equivalent to o}/o,>¢¥/¢,, which is a contradic-
tion of (4.13). Thus m,<m,, and we conclude that m,=m, in D*.

To complete the proof, repeat the above (k—2) times where at the
tth step, (1=1,2, ---,k—2), we assume m;=my=-++ =m;>M;1 =M1, =
---2m,, and arrive at a contradiction as before. We conclude that
M=My="++ =M =---=mM,. Thus we can write
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(4.19) QD" =(—1)(stmi'+ 3 aum?),
HD¥) =gt mit 33 pom .

Using Cauchy’s inequality as before, the minimum of Q(D*), for ¢(D*)=
¢ (say), is attained when

(4.20) My=my=+ - =my_ =+ oty ¢V I 7*,

m;=«~ oy ¢/V ¢i T*r : (’i=k,---,p),
where
(4~21) T*=V S[’If-lo'ickq +i§p’}c h S[’io'it .

By (4.9), m;>m,, (1=0, ---,k—1), and by the assumption /o,y ;4=
&ildis1, We see that m,=m,,,, (i=Fk, ---, p—1). This completes the proof.

We have also established

COROLLARY 4.1. If the p responses are numbered such that the in-
equalities in (4.8) are satisfied and k is defined as in Theorem 4.2, then
the values of m,, my, - -+, m,, for the optimum HM(RB) design, are given
by the equations in (4.20). '

The ‘standard multiresponse model’, i.e. when all responses are
measured on each experimental unit, is applicable only when m,=m,=
---=m,. Thus, the above establishes the important fact that in a large
class of situations the optimum design (with respect to the trace crite-
rion, and under the cost restriction) is strictly hierarchical, and it is
not advisable to force the design to satisfy the standard multiresponse
model. With respect to other criteria too (like the determinant crite-
rion), the authors have partial results which also favor the HM model.
But the development of those is on different lines and should be con-
sidered elsewhere.

The above studies point out to the need for more extensive research
on various aspects of the HM model whose theory is still in its infancy.

As a final remark, we may say that the use of the above results
depends on the variances o;; (=1, ---, p) of the p responses, which are
usually unknown. Thus it is assumed that in practice, ‘a priori’ esti-
mates of oy, Voi;, oufo;; and 6¥oi4y.01, (3, 5=1, - -+, p) are available (ei-
ther from a pilot experiment or otherwise). Such estimation problems
will be considered in a later communication.

Thanks are due to the late Professor S. N. Roy, who long ago sug-
gested to one of the authors (Srivastava) an inquiry into the advisability
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of using the incomplete multiresponse designs in comparison to the stand-
ard ones.
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