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1. Introduction and summary

Recently the efficiency of the estimates of spectral characteristics of
time series obtained by first fitting autoregressive models is attracting
increasing attentions [1], [7], [10], [11]. The purpose of the present paper
is to introduce a systematic approach to the evaluation of asymptotic sam-
pling variabilities of this type of estimates of power spectra, under the
assumption of strict stationarity and mutual independence of the innova-
tions of the original stochastic processes.

Starting from the basic asymptotic distribution of the estimates of
autoregression coefficients of an autoregressive process with independent
innovations, which is due to Mann and Wald [8] and Anderson and
Walker [8], we introduce a linear transformation of variables to get a
distribution of a set of mutually uncorrelated variables. The limit dis-
tribution of any linear combinations of the original estimates can very
easily be obtained by representing them with these uncorrelated variables.
The transformation is induced by a process of successive orthogonaliza-
tion of the variables in the time series, the coefficients of the transfor-
mation being obtained by recursive fitting of autoregressive models with
increasing orders.

Though the estimate of power spectral density is a quadratic func-
tion of the estimates of autoregression coefficients its main variability
in the limit is attributed to the linear term and the above stated pro-
cedure can be applied for the evaluation of its asymptotic distribution.
The limit distribution being Gaussian, the evaluation of the variance
matrix of the limit distribution of the estimates at various frequencies
is sufficient for our purpose. The result is given in a readily comput-
able form.

Some examples of evaluation of the variances of estimates are given
and the relation of the results with the Parzen’s guess ([11], p. 33) of
the form of complex Wishart limit distribution of the estimates of spec-
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tral matrix is noticed.

As to the only difficulty in practically applying the present pro-
cedure, the decision of the order of the autoregressive model to be fitted,
a practical scheme of decision has been proposed by the present author
[2]. By using a result of application of this procedure a numerical ex-
ample of estimation of a real power spectrum is illustrated and some
general comments on practical applications are made.

The results of the present paper clearly indicate various potential
advantages of this estimation procedure over the conventional one of
Blackman-Tukey type [4].

2. Preliminary considerations

We first assume the time series under observation to be a realiza-
tion of a purely non-deterministic weakly stationary process X(n). Thus
we are assuming FE(X(n))=0 and the memory of the infinite past history
of X(n) is vanishing in the sense of mean square.

Under the present assumption X(n) has a one-sided moving average
representation

@.1) X(n)=§‘}] ce(n—1)

where ¢,=1 and {¢(n)} is a white noise, i.e., ¢(n)’s are mutually uncor-
related, with M{e(m); m=n} =M{X(m); m=<n}, M{---} representing
the closed linear manifold generated by the elements in the braces [6].

Accordingly, X(n) can be approximated by &(n)+ Z a;,X(n—m) arbi-
trarily closely with increasing I, where 2 a;, . X(n— m) is the projection
of X(n) on M{X(n—m); m=1,2, --., l}. It is known [12] that the roots
of

l
(2.2) 1— z_‘,l Q2" =0

lie outside the unit circle.

These observations provide the rationale of the wide applicability of
an autoregressive model for the estimation of power spectra in practical
situations.

3. Basic results of the estimation of autoregressive model

Taking into account the observations of the preceding section, we
assume, without impairing the practical utility of the following discus-
sions, that the time series under observation is a realization of an auto-
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regressive process defined by
G.1) X(m)=3 anX(n—m)+e(n),

where {e(n)} is a white noise, i.e., the variables are uncorrelated with
zero mean and finite variance E¢'(n)=q* (>0), and the roots of the char-
acteristic equation

M
3.2) 1-> a,z"=0

are lying outside the unit circle. &(n) is sometimes called the innovation
of X(n). The power spectral density function p,,(f) of the process {X(n)}
is given by

(3:3) Pe(f)= 33 Rull) exp (—i2afl)

02

1— % A €Xp (—127fm) :
m=1

’

where R,..(l)=EX(n+0)X(n).

We consider the situation where a set of data {X(n); n=1,2, ---, N}
is given. Our estimate {@,;m=1,2, ..., M} of the autoregressive co-
efficients is obtained by solving the equation

(3.4) 3 Cull—m)in=Cu(l)  1=1,2---, M,

where Cu(l)=%lvi_i‘.1” X(Jl|4+n)X(n). It should be noted that we are as-

suming EX(n)=0 and in pra;ctical applications X(n) should be replaced
by X(n)—X, where X =% %_1 X(n), in the definition of C,(l). We also
define an estimate S*(M) of & by

(3.5) S =Cos(0) — 2, 4 Curlm) .

This means that we are fitting a model with first M+1 covariances
equal to {C,.,(1);1=0,1, ---, M}. If the process X(n) is strictly station-
ary and ergodic, &, and S*M) converge to a, and o* with probability
one as N tends to infinity.

By using the result of Anderson and Walker [3] of the limit distri-
bution of sample auto-correlation coefficients of a linear process we can
get,
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THEOREM 1. Under the assumption of strict stationarity and mutual
independence of {e(n)} the distribution of VN Aa,=+vN(d,—a,) (m=1,
2, +«+, M) converges, as N tends to infinity, to an M-dimensional Gaussian
distribution with zero mean vector and variance matric *Ryy, where
Ry 18 an M XM matrixz with (I, m)-element equal to R, (m—1)=EX(n—1I)
- X(n—m).

The theorem can be proved by using the fact that the limit distri-
bution of {vNda,;m=1,2, ---, M} is identical to that of {5,; m=1,2,
.-+, M}, where

" " C.(1)
3.6) 7:}2 =+ N Ry (?zs(z)
e | CM) _

and

&;(l):%l. \ﬁ‘,l X(n—Dem) (=12 -+, M).

From the result of Anderson and Walker [3] it can be shown that dis-
tribution of {¥NC,(l);1=1,2, ---, M} tends asymptotically to be Gaussian
with zero mean vector and variance matrix *R,,. The assertion of the
theorem is a' direct consequence of these observations.

Now the matrix Ryl admits the following factorization

(3.7) R;(}[= }}DMDMBM y
-1 0 0- - .07
—a,,; 1 0. - -0
(3.8) BM-: _aZ,Z —aZ,l 1 « o O
— —'('1'51-1,”4 —l‘lu—l.x-z - - - 1
— 1 —
... 0
=0) 0 0
1
0 0 0
a(1)
3.9 D = ’
3.9) 4 0 0 1 0
a(2)
: 1
0 0 0 —_—
_ d(M—1) _
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o(l) and {a,,; m=1,2, ---,1} being given by the relation
l 2
(3.10) f(l):EIX(n—l)—E al,,,,X(n—l+m)l
m=1

=Min E| X(n—1)— é_l B X(n—1-+m) |2 :

16}

and T denotes the transpose. From this relation we can see that the

random variables Y(n—1) = X(n—0)— 3 ayn X(n—l+m) (=0,1, ---, M)
m=1

are mutually uncorrelated and with variances equal to 4*(l), respec-
tively. We are assuming ay.=a; (k=1,2, ---, M), F(M)=d, Y(n)=
X(n) and ¢¥0)=EX*n). Thus by applying the transformation DyBy
to the vector X,=(X(n), X(n—1), ---, X(n—M+1))" we get DyByXy=
(2o(n), z(n), « - -, 2y_1(n))T with Ez(n)z,(n)=0 ((#m) and =1 (I=m). As
the variance matrix of the limit distribution of {vNC.(l);1=1,2, ---,
M} is equal to o*Ryy, where Ry,=EX, Xy, we can see that for C..=
{C.e(1), Cpe(2), - -+, Coe(M)}” the variance matrix of the limit distribution
of Uy=06"'VNDyByC,. is an M XM identity matrix I,. Thus we get
an asymptotic representation of vNda={+vNda,; m=1,2, ---, M}* by
variables which in their limit distribution are mutually orthogonal and
normalized ;

(3.11)- VN da~eB%5 Dy Uy,

where ~ means that the both side members have one and the same
limit distribution. By using this relation we can very easily obtain the
limit distributions of any linear transforms of +N 4a.

The foregoing discussions are all valid under the assumption of mu-
tual independence and strict stationarity of {e(n)}. To discuss the over-
all sampling variability of the estimate of power spectrum we have to
add a further assumption of finiteness of the fourth order moment of

¢(n). In this case we have, for Cse(l)=—11\7 é_ls(n+l)e(n),

THEOREM 2. If {e(n)} is strictly stationary and (n)’s are mutually
independent with finite fourth order moment m,=Eé'(n), the simultane-

ous distribution of JW%/L‘)__—T; and mﬁs}_(l)_ ((=1,2,---,L) (L; any

positive integer) converges to (L-+1)-dimensional Gaussian distribution
with zero mean vector and variance matrix I,,,, where I, is an (L+1)
X (L+1) identity matrix.

The proof of this theorem is readily obtained by using the central
limit theorem for finitely dependent stationary process due to Diananda [5].
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As C.(l)’s are arbitrarily closely approximated, in the sense of
mean square, by linear combinations of C.(m)’s our present theorem
shows that ¥ N(C..(0)—d*) and ¥ N4da tend to be independent in their
limit distribution. This fact will be used in the following discussion of
the sampling variability of the estimate of power spectral density.

It should be mentioned here that the mutual independence assump-
tion of {e(m)} is quite restrictive. This point would deserve further
investigations.

4. Estimation of power spectral density
Our estimate 9,,(f) of the power spectral density p..(f) is given by
S*M)

4.1) Do )= y ;
1— 2=1 a,, exp (—12xfm)

where {a,} and S*(M) are given by (3.4) and (3.5). If we put Au(f)=
1—% @, €xXp (—i2zfm) and ﬁ,,(f):l—-i a., exp (—i2zfm), we have
m=1 m=1

4.2) Apm(f )=i)zx(f )'—'pzx(f )
_ASHM) | Au(f) ['= 4| Au(f) 'a*(M)
| Ax(f) | Au(f) [

where 4S*(M)=SM)—d (M) and 4| Alf)[=|ALS) I~ A We
assume the condition of Theorem 2 to hold hereafter. For the follow-
ing discussion of limit distributions reference should be made to another
paper by Mann and Wald [9].

Under the present assumption the process X(n) is strictly stationary
and ergodic and, as N tends to infinity, S*M) and /i,,( f) converges with
probability one to (M) and A,(f) which are never equal to zero. Also
it can be shown that the limit distribution of VN 4S*M) and v N 4| Ax(f) |*
is identical to that of ¥ NVSXM) and ¥ NV |A,(f)’, where by definition

VS M)=(E—(M)), V|Ax(S)=(Au(f)IAL(F)+Ax()AAx(S)), &=C.(0)

<=_117 %_152(7»)) and AA,,(f):—i_l da,, exp(—i2zfm). Thus the limit
distribution of 4N 4p,,(f) is identical to that of Q,(f) which is defined
by

(43 Qu(n)=vN (50 )~ (L 42D L))

As was mentioned in the preceding section & tends to be independ-
ent with da in the limit distribution and the present result shows that
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VN 4p.(f)/p..(f) has a limit distribution with a variance composed of
two components: one due to the relative variation of S*(M) and the

other due to that of IA\M(f Y|*. For the evaluation of the former we

have NE(V S(M )>2=ﬂ—1. For the latter, the orthogonal representa-
(M) a*
tion of ¥/Nda obtained in the former section is very conveniently used.
Using the notations of the preceding section, we have, from (3.11),
for any M x L matrices V and W

(4.4) E.{N[V74a(4a)™ W1} = [V ByDyDyBsW1],

where E.{-} denotes the expectation in the limit distribution of the
quantity whithin the brace. Using this result we can evaluate the vari-
ances and covariances of our estimates at various frequencies. As

AA,(f)= — i}l da,, exp (—i2zfm), we have for 4A,=(dAx(f), 4Ax(f>),
oo dAN(fR))T

(4.5) E.{NA4A(4Ay)"}=E.{NFZda(da)" F}
=[FEBLDyDyByFx],
where
, exp (—12xfy) exp(—2zfy) - - - exp(—12xfx)
(4.6) Fyx= exp (——.i27r2f1) exp (-—.i21r2f2) -« - exp (—.'i27r2fK)
exp (—i2zMf,) exp(—i2zMf) - - - exp(—i2rMfy)

From the definition of B, we have

4.7 ByFx=

Aufi) exp (—i2zfi) A f2) exp (—i2xf) .-« Ao(fx) exp (—i2xfx)
Ai(f1) exp (= 1272h) Au(f2) exp (.—i21r2fz) -« Ai(fx) €xp .(—i2n:2fx)

A7 exp (—i2aMf)  Awlfs) exp (—i2aMfy)- - - Aur(fi0) exp (—i2mMfic)

where A, (f)=1— Zk} 04mexp(—i2zmf) and — denotes the complex con-

jugate, and accordingly
4.8) [E.{N4Ay(4A,)"}1(, m)
= S (A(F) exp (—i2a(l+1)f)

- A7) exp (—i2n(k+1)fm))$ ,
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where [ ](, m) denotes (I, m)-element of the matrix inside the square
brackets. In the same manner we can get

(4.9) [E.{N4Ay(dA,)"}1(l, m)
=0 S (A(F) exp (—i22(k+ 1)f)

« Adfn) exp (—i2n(k+1)fn)) — -~ > (k)

By using these results we get

VIAx(f) [ VI Au(fn) !
4.10 E.iN
*19 { [Ax(f) [P | Ax(f) lz}

= 4pxx(fl)pzx(fm) g Re (Ck(fl)) Re (Ck(fm)) y

where

4.11) Culf)= /'((_f’) j;f(_f,g exp (i2z(k+1)f)

and Re(x) denotes the real part of . Our final result is thus given by
the following :

4p..(f) Apu(fm)}
1y E|NPl el
= (- (gi)z —1)+4p.fIPel ) 5 Re (Ci£)) Re (i) -

If we are only interested in the relative shape of the spectrum we
should use @..(f)=2..(f)/S*(M) instead of p..(f). For the evaluation of
the variance of the limit distribution of ¢,.,(f) we have only to retain
the second term in the above expression and for this we need only the
assumption of Theorem 1.

It also should be noted that the foregoing results are all valid when
M is equal to or greater than the order M, of the process, M, being
the value of M for which the model holds exactly with a,+#0.

5. Some examples of evaluation of variances of limit distributions

Here we shall see some of the results of evaluation of variances of
asymptotic distributions.

Case 1. White noise. In this case we have A,(f)=1 and &(k)=d
(k=0,1, ---, M). Accordingly we have C.(f)=(1/d%-exp (12z(k+1)f) and
we get
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(N[ TIAAEY g :
(.1) Ew_{N<—”—) —4'ST (cos 2n(k+1)f
| Au(f) P ’°=°( ( )

-9 (1 sin 2zM f 2 1
M1+ 3 sin 2of <05 27+ )

—4M  at f=0,%,
2k+1
at f=10r+1)
l
=O, 1, ey, t = l:l’ 2’ RN —1).
(k M) and at f 2M( M—1)

This result shows a typical behavior of our estimates at f=0 and 1/2,
where the variance is nearly doubled compared with that around f=1/4.

Case 1I. Markovian moise. This is the case where the order M, of
the process is equal to 1, i.e., X(n) is given by the relation X(n)=
aX(n—1)+en) with |a|<1. For this case we have, for M=1,

_ PlALS) PN a1 a2 (cos 2zf —a)?
(5-2) Ew_iN< | Ax(f) |2>}_4(1 a)(1+a2—2acos2n-f)2

l1—a

1—a 1
=4 t -
Ta T3

The result shows that when a is close to 1 the variability of our esti-
mate is very large at f=0. The effect of increasing M beyond M,=1
can be evaluated as in the following discussion of Case III.

Case III. General case, but with large M(>>M,). When k is equal
to or greater than M, we have A,(f)=Au(f). If we put A, (f)=
| Ay(f) | exp (i9(f)) we have, for k=M,

(5.3) Cul ) =(0=(f)) ™" exp (1(20(f) +2n(k+1) 1)) .

When M, is negligibly small compared with M, l:‘i‘,l [Re (C(f)))* will then
k=0
be approximated by

-9 Sin 27'['Mf
6.0 Gul) )1+ 52 cos e 1) +40(1)).

Thus in this case we can see that if the contribution of the fourth order
moment of ¢(n) is negligible the variance of the limit distribution of
Daa( )/ D2a(f) Will be nearly equal to that of the case of a white noise
discussed in Case 1.
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This is just the result which is often assumed to hold for the con-
ventional type of estimates, which are essentially local averages of period-
grams, assuming the averaging operation to be extended over such a
narrow bandwidth that the spectrum can be considered to be flat within
the band.

In practical applications of our present estimation procedure we try
to keep M as close as possible to M, and the situation assumed in Case
III will never take place. Thus our estimate will often be with smaller
variance than that of a conventional estimate. Also by taking into
account of the fact that the bias of our estimate is generally considered
to be of the order of 1/N we can expect that the bias of our estimate
will automatically be decreasing as N is increased.

In passing we will mention that the discussion of this section sug-
gests that the Parzen’s guess ([11], p. 83) of the complex Wishart limit
distribution of an estimate of spectral matrix, obtained by fitting an
auto-regressive model to a multiple time series, to be with a variance
matrix equal to the spectral density matrix may only be valid under
the situation of Case III.

6. Comments on practical applications

The only difficulty left for the practical application of the present
procedure will be the decision of M to be fitted to the observed data.
The decision must be useful even for the cases where actually the true
order of the process is infinity. A practical procedure of this decision
has recently been proposed by the present author [2]. Our numerical
examples of successive applications of this decision procedure and the
present estimation procedure produced reasonable estimates of power
spectra without very much amount of help of our subjective judgement.
A result of application of this procedure to a real time series of length
N=511 is illustrated in Fig. 1.

At the upper part of the figure, the estimate obtained by this suc-
cessive procedure is represented by a solid line. Along with this, there
are illustrated two other estimates which were obtained by applying the
hanning type windows [4] with truncation points, or the maximum num-
bers of lags (MAXLAG’s) used for estimation, equal to 45 and 90, respec-
tively. Details of this overall procedure and the numerical results will be
discussed in a subsegent paper. At the lower part of the figure is illus-

1 V1 Ax(f) 12»)‘” - e
trated the values of ( N Ew{N ( IASD T , or the asymptotic co
efficient of variation of ¢.,(f), which is obtained by assuming the esti-
mated quantities to be the real values. This last procedure is going to
be briefly discussed in the following.
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-~ AUTOREGRESSION
M=15

O HANNING
10°7— MAXLAG=90

X HANNING
MAXLAG=45

e N=511

104

|

102

L .

0.1

_>f
Fig. 1 Estimates of power spectrum of a real time series and the asymtotic
variability of autoregressive estimate.

In practical situations, we can get estimates of C,(f)’s by replacing
{a..} and & (l) in their definitions by {a,.} and S%!) (=0,1,2, ---,
M) which are obtained by successively solving

©.1) 5} Coslb—m) m=Cosl) k=12, -1
and
6.2) SV =Cor0)— 3} 81,nCoslrm) .

The computation is very simply implemented by the recursive procedure.
Also an estimate of Ee!(n) would be available by using {4.} and the
original data.
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By using the quantities thus obtained we can get an estimate of
the variance of the limit distribution, but the overall statistical char-
acteristics of this last estimate is left for further investigation.

Assuming the fitted model to be strict and the process to be Gaussian,
we can obtain the equivalent degrees of freedom of our estimate as de-

fined by 2N [Ew{N <A;Dm_,(,(ff)‘)>"}]“‘ with m,=38¢%, which is to be used for

the comparison of the present estimate with conventional ones.

Table 1. Equivalent degrees of freedom and equivalent
truncation points for hanning and Parzen windows of
the estimate of Fig. 1.

Equivalent Equivalent truncation points
f degrees of
freedom HANNING PARZEN
1/36 36.4 40.1 55.7
2/36 21.0 67.5 93.7
3/36 64.6 23.7 33.0
4/36 50.7 29.5 41.0
5/36 27.4 52.4 72.2
6/36 45.4 32.7 45.4
7/36 32.7 4.3 61.6
8/36 29.1 49.5 68.7
9/36 36.5 40.0 55.5
10/36 43.5 34.0 47.2
11/36 29.9 48.2 67.0
12/36 46.3 32.1 4.5
13/36 46.1 32.2 4.8
14/36 24.9 57.4 79.8
15/36 47.6 31.3 43.4
16/36 53.9 27.9 38.8
17/36 36.3 40.2 55.8

Also by multiplying E’m{N <A_p,%>2} by proper constants we can con-
Dz

vert this quantity into the ones which we will call the equivalent trun-
cation points of respective windows, which give the truncation points,
or the maximum numbers of the lags of autocovariances used for esti-
mation, of respective windows which will give one and the same vari-
ability as the present one when the spectrum is locally flact and the
process is Gaussian. In Table 1 are given these quantities along with
the equivalent degrees of freedom for the data of Fig. 1. The result
confirms our feeling [2] that the present estimate shows generally smaller
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variability than the classical estimates which are shown in Fig. 1 and
considered to be with reasonable resolvabilities.
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