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Introduction and summary

In the previous sections, we derived a representation for the ch.f.’s
¢(t) which satisfy the relation

0.1) p(t)=p(ait) - - p(at)p(—apiit)- - *o(—nl)
1>a,>0, k=1,2,-:--,7.

We shall call such ch.f.’s partially stable. According to the results
of the preceding sections, every partially stable ch.f. ¢(¢) is, except for
the factor of the form ¢', semi-stable in the sense of P. Lévy [2] (see
Section 58). In fact, if ¢(f) is not a “stable” ch.f. then there exist a
positive number p and mutually prime positive integers l, -+, 1, (the
g.c.d. of them is 1), such that

0.2) loga,=—bLp, k=1,---,n.

We can easily verify that ¢(t) satisfies one of the relations

(0'3) 90(t)=sor(ct) ’ (When (aly M a/n) € Bg(.o» ’
and
0.4) p(t)=¢'(—ct),  (When (ay, - -+, a) € Cllo)),

where ¢=e*, T=c™* and « is the unique real zero of the entire function
ai+---+a:—1. In any case, ¢(t) is semi-stable. If conversely o(f) satis-
fies (0.3) or (0.4), then ¢(t) can be put in the form described in Theo-
rem 4 and Theorem 3 respectively (see [2]). However, a semi-stable
ch.f. is not necessarily partially stable. Whether it is partially stable
depends on the value 7 appearing in the defining equation

(0.5) et)=¢’ (7 Vt), r>1.

In Section 6, we shall show that the gap between semi-stability and
partial stability will be filled with ch.f.’s satisfying the relation
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(0.6) oO=TTvlat), 1>|a.l.

B. Ramachandran and C. R. Rao [9] introduced a class of generalized
stable ch.f.’s which satisfy

n n+m
(0°7) ;El; prj(aj t)=j;l:;l;—1 Sorj(ajt) ’ Tj>01 j=17 M) n+m .

This is a very general relation containing (1.5), (0.1) as well as (0.5).
They studied the case a,,;=1, a,,,=- - =a,.»n=0, i.e., the relation

(0'8) ¢(t)=¢’1(a,lt). * -Sorn(ant) ’ Tj>0r 1>|aj |>0’ j=1, LAY (2N

In Section 7 we shall show that in spite of the apparent generality,
every ch.f. satisfying (0.8) is, except for the factor e*, semi-stable.

Every semi-stable ch.f. is infinitely divisible, and every infinitely
divisible distribution has a non-empty domain of partial attraction. We
derive in Section 8 the condition under which a distribution F belongs
to the domain of partial attraction of a semi-stable distribution. Some
properties of the semi-stable distributions, existence of moments, and
differentiability of the distribution function, are derived in Section 9.

6. Semi-stability and partial stability

Let ¢(t) be a semi-stable ch.f. satisfying (0.5) and suppose that it
is not stable. Then ¢(t) is infinitely divisible and is put in the form

©6.1) log (t)=ipt+ S“ <e“’”— 1— l’ﬁ : >dM(a:)
o et o
where
M@)=—i(-logz)fz", x>0,
N@)=p(—log |z|)/lz]|*, «<0,
and
6.2) (), p(t) € P*((log p)/a) .

(P*(¢) is the set of all left continuous periodic functions with the period
§. P*(0) is interpreted as the set of real numbers). For any y>1 and
0<a<2, such ch.f.’s really exist (see [2], Section 58). If ¢(t) satisfies
the farther condition (0.1) of partial stability, then a’s are written as
(0.2) and we have, in addition to (6.2),
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(6.3) A2), 1(t) € P*(p) ,
and
(6.4) ai+---+ai—1=0

(see Theorems 1-4). It follows from (6.2) and (6.3) that r=pa/logy is a
rational number since otherwise A(t) and p(t) are constants and hence
¢(t) must be stable. Because of (0.2), the condition (6.4) is equivalent
to the statement that ;" is a zero of the polynomial al14 .. 42la—1,
But since y™" can not, for any choice of a rational number r, be a zero
of a polynomial when y is non-algebraic, semi-stability does not imply
partial stability. However, the following lemma suggests that the semi-
stability will be characterized by the relation (0.6).

LEMMA 8. If 1>a>0, then there exists a sequence {c,} of non-neg-
ative integers such that,

(6.5) ; cat=1

holds.

Proor. The sequence {c,} is not unique, and we give a constructive
proof to be used later. Let p and q be any positive integers such that

a>b=1—pa?>0.

Let {c;} be a sequence of non-negative integers defined by

=0, cl= [(b—%lc,’,a")/a"] .

n n
b—> cia*=0=b—3 cla*—a",
1 1

Then we have

which implies that b—i cia® exists and is equal to 0, i.e.,
1

—§‘_. cla*=0
1
Then, put
(4 if n#q,
=
cit+p if n=q. (q.e.d)

Now we have

THEOREM 6. If a ch.f. o(t) satisfies (0.5), then there exists a sequence
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{a.}, 1>a,=0, n=1,2, ---, such that the relation

(6.6) o)=T1 p(a.t
holds.

THEOREM 7. Let {a,} be a given sequence of real numbers such that
la,|<1, n=1, ---; if a,=0, then @, =0, 2=-+-=0; and such that
6.7 f‘, a, =1 Jor some a>0.

1

If a non-degenerate ch.f. ¢(t) satisfies equation (0.6), then there exists a
real mumber B such that ¢(t)=e"*"¢(t) is a semi-stable ch.f., and it satisfies
the relation

(6.8) $@)=¢'(ct) , when a,=0, k=1, ---
or
(6.9) ot)y=¢'(—ect), when a,<0 for some k.

If especially for some i and j, log |a,|/log|a;| is irrational, then ¢(t)
is a stable ch.f. with the characteristic exponent a. If on the contrary
there exist positive number p and a sequence l;, 1, - -+ of mutually prime
positive integers such that

(6.10) log |ax|=—lyp, if a,#0,
then constants y and ¢ of (6.8) and (6.9) are given by y=c™*, and c=e".

PrOOF OF THEOREM 6. If a=2, ¢(t) is a degenerate or non-degener-
ate normal ch.f. (it is an infinitely divisible ch.f. and the Poisson spectra
can not have any point of increase), and nothing is left to be proved.
We assume therefore that 0<a<2 and consider only the case 0<a<1:
the remaining cases will be treated similarly. Then (6.1) reduces to

(6.11) log (t)= S” (e —1)d M (x)+ S (" —1)dN(x) .

0
Put a=7", ¢,=0 and let {c,} be a sequence of non-negative inte-
gers as defined by Lemma 8. Put

{ a’s  if m=¢q+---+etl, 1=IZe,,
U=

0 otherwise .

Then ?‘ a:=1, and from (6.11) and (6.2) we have
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log ¢(a.t)=a; log ¢(t) , n=12 ...,
from which (6.6) follows.

Proor orF THEOREM 7. It was shown by R. G. Laha and E. Lukaecs
[4] that the ch.f. ¢(t) satisfying the relation (6.6) is infinitely divisible
and that it is a degenerate or non-degenerate normal ch.f. whenever
a=2. We assume therefore that 0<a<2, and let the P. Lévy canonical
representation of ¢(t) be

6.12) log¢(t)=iﬁt—%a’t’+8: (e“’—l— 1’_:“; : )dM(a:)
(e -1-2 JaNG) .

We rewrite (0.6) and (6.7) as

613)  sO=T @) To(-bt), 1>a,20, 1>b,20,
and
(6.14) i', a:.+$ bi=1.

It follows from (6.12), (6.13) and from the assumption 0<a<2, that
(6.15) @=0,

(6.16) M(w):é M(a:/a,.)——i:} N(—=/b,), x>0
and
(6.17) N(x)=$ N(—x/a,,,)—,% M(—afb,), %<0.

The functions f(t)=M(e*) and g(t)=—N(—e™*) are non-positive, mono-
tone non-increasing and satisfy lim f(t)=lim g(t)=0. Equations (6.16)
t——oco t——o0

and (6.17) become

(6.18) FO=3 f(t+A4)+3 gt+B.),
and
(6.19) 9()=31 g(t+4)+33 f(t+B.),

where A,=loga,, and B,=logb,.
We can solve these simultaneous equations by reducing to the finite
sum case which was treated in Section 3. We shall therefore consider
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only the case b,=0, k=1,2, .--. Then our equations become mutually
independent :

(6.20) FO=3 f¢+A)

and

(6.21) g(t)=$ g(t+A,) .

For the proof of the theorem it suffices to prove the following lemma.
LEMMA 9. (6.20) implies that f(t) is of the form

(6.23) F)y=—at)e,

where

At) € P*(p), Jor some p=0.

PrOOF. For any given ¢>0 let » be a sufficiently large positive
integer such that

(6.23) OgA,,(t)Eé ft+A)=—e, t<0,

and let it be fixed. The integral

0
(6.29 w@=\ et
converges and is regular in the half plane Rez<0. Put
(6.25) o(2)=1—ai—---—a’,
(6.26) E@)=30 S:’ e f(t)dt ,
and
o 0 0
(6.27) 5 2)=3" S e"‘f(t+A,,)dt=S e 4,(8)dt ,
n+l J—oo —co

the series being absolutely and uniformly convergent in the half plane
Rez=r<0. It follows then that

(6.28) 1/(2)0.(2)=Ex(2)+04(2), Rez<0.

By the inversion formula of the Laplace transform, we have for negative
r, 4 and ¢,
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(6,29) S _Aff(‘t)df_—llm 1 Sr""ﬂ tz, XI(Z-I‘A) dz
-0 2mi -ty
1 r+iy , E,.(Z+A)
| o0t L [ Bl
(6.30) =a)-Im o W et )
where
1 (™, u(z+A4)
31 =—1li S e
(6.31) a)=—lmo o oGt

But if ay=min(a,, ---, a,), and if x=Re 2<0, then
S0 -
1 \Gy ay

where 1<p<n. Hence if —r is a sufficiently large number possibly
dependent on 7, then,

| 0,(2) |=0aF ~p-af=a: as x— —oo,

(6.32) | 0.(2) I_Z_-%- exp{A4,r}, Rez=r<0.
On the other hand, from (6.23) and (6.27) we have
©33) 15.@)]=|-240+1[ eaa®|=Z, Rezsr<o.
z z J-= |z]|
It follows from (6.32) and (6.33) that

(6.34) |en(t)|=C-¢, A, =t0,

where C is a positive constant independent of =.
Now the second term of (6.30) becomes

hae 1 t(z—A4) E,.(Z) —_ En(A)
(6.35) 2_—8%9 Do) k)

= 2m
where contours L,, k=0, +1, +2, --. are defined as in the proof of
Lemma 1, but this time they may depend on n. If (ay, :--,a,) € A (0.),
0,.=0, then the first term of (6.35) is calculated to be

zl_n(t)e(u"—d)t ,

where a, is the unique real zero of ¢,(2), and where 2, ,(t) € P*(p,). Thus
(6.30) reduces to

(6.36) Sc_m e~ f(r)dr=y,(4)— ‘f_""((//]l))_ —en(t)+ Ay o(t)eCn™ 0t

It follows from (6.28), (6.33) and (6.34) that E.(A)/s,(4)—x,(4), and
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&(t)—0 as e—>0 and n—o. We also have a,—a. Therefore for t<0
A(t)=lim 2, ,(t) exists, the convergence being uniform in every compact

subset of (—oo, 0), and (6.36) becomes
(6.37) S_ e f(dr=a(t)e " .

Now {p,} is a monotone non-increasing sequence : more precisely for
each n, there corresponds a positive integer p, such that p,,;=p,/p,.
Hence p=lim p, exists. If especially log a./log a; is irrational, then p,=0
for all n=1, j. Again if loga,=—1lp, k=1, .-+, p>0, I’s being positive
integers and if I, - -+, [, are mutually prime, then p,=p for n=s.

It follows from these considerations that there exists a function

4(t) € P*(p) such that 4,(t)=2(t) for t<0. Differentiating (from the left)
both sides of (6.37), we obtain

(6.38) JS@®)=—Aa(t)e, t<0,
where
W)= —(a—DA)—2(t) € P*(p) .

Considering the given equation (6.20), we conclude that (6.38) holds
for all real ¢.

7. Generalization

Consider the ch.f.’s satisfying the equation

P n
(7.1) go(t)::'l:l' SDrj(aj t) I;EI; o ( —a, £,
rj>09 1>aj>0, j:l, 2, s, M.

In order to determine ¢(t), we introduce the entire functions

o (@)=1—pnai—---—r,a;,
af(@)=1—nai—- - — 105+ + - - +1iai,
and
a(@)et(@), if p<n,
a*(z)={
af(2) if p=n.

Let a be the unique real zero of ¢f(z). Now we have,

THEOREM 8. Suppose a non-degenerate ch.f. o(t) satisfies the relation
(7.1), then we have
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(i) n any case, 0<a<2. If a=2, ¢(t) is a normal ch.f.: o(t)=
exp {18t—1/2-4t*},

(i) if 0<a<2 there exists a real mumber B such that ¢(t)=e **¢(t)
is semi-stable. It is stable if (a5, -+, a,) € A 0). If (ay, -+, a,) € Ap),
J(t) satisfies one of the following two equations:

P(t)=¢'(ct) , when (ay, - - -, @) € Bi(p) ,
and,

dt)=¢'(—ct),  when (a, ---, a.) €Cilp),
where c=e~*, and y=c™".

PROOF. Statement (i) and the infinitely divisibility of ¢(f) were
proved by B. Ramachandran and C. R. Rao [9]. We therefore assume
that 0<a<?2. Let (6.12) be the P. Lévy representation for ¢(f). From
(7.1) we obtain

(7.2) =0,

(13)  M@=3r,M@la)-37,N(~afa), >0,
and

(7.4) N(z)=3] r,N(w/a,)—é rM(—gla), x<0.

The functions f(t)=M(e™*) and g(t)= — N(—e™*) are monotone non-increas-
ing and satisfy

(1.5) FO=31,FE+A)+ 31,00 +A),
(7.6) 0O=3 1,00+ A)+ 3 1, fE+4))

We can show that Theorem 5 holds true even if we replace (3.1)
and (3.2) by (7.5) and (7.6). Naturally some evident modifications are
needed. Thus, for example, the functions ¢4(2), o(z) must be replaced
by ¢f(z) and ¢*(z), and so on. Lemma 7 is also true when (4.6) is re-
placed by

(7.7) P(x)=r P(z/a)+ - - - +7. P(x/a.)
(note that a>0 implies 7,+---+7.>1). Therefore Theorems 1-4 hold
true even if we replace the statement “o(t) € Tu(ay, -+ -, @y —@pyy, < -,

—a,)” by “¢(t) satisfies the relation (7.1)”. The proof of our theorem
is now immediately completed.
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8. Domain of partial attraction

Let X;, X;, --- be a system of indpendent random variables with
common distribution F. If for some choice of sequences {4,} and {B.},
the distribution of

X+ +X,
n=’——"_An
13 B,

converges to a non-degenerate distribution G, then we say that F be-
longs to the domain of attraction of G. When a suitable subsequence
of &, converges, we say that F belongs to the domain of partial attrac-
tion of G. A distribution is infinitely divisible if and only if it has a
non-empty domain of partial attraction (see [1]). In this section we shall
derive a condition that a given distribution F belongs to the domain of
partial attraction of a semi-stable distribution.

Let ¢(t) be an infinitely divisible ch.f. with the P. Lévy canonical
form

®.1) log go(t)=i,30t+5: (e“’—l——l%)dM(m)
+ S"_“ (e“’—l— lfﬁz )dN(a:) .

The following lemma is known (see [1], Section 25, Theorem 4).

LEmMMA 10. In order that a distribution F belongs to the domain of
partial attraction of the infinitely divisible distribution corresponding to
(8.1) it is mecessary and sufficient that there exist a sequence {B,} of posi-
tive numbers and a subsequence {N(n)} of the sequence {1,2, ---} of all
positive integers such that

(8.2) 1i_1:£ N(n)(1—F(Bx)=—M(z), x>0,
(8.3) lijn N®)F(—B,x)=N(—=z), x>0,
and

®4)  limTm N {S PR (B,)- ( SWE xdF(B,,x))’} =0.

|zl<
Now we have

THEOREM 9. In order that a distribution F belongs to the domain
of partial attraction of a semi-stable distribution corresponding to (0.5)
with 0<a<2, it is necessary and sufficient that there exists a sequence
{a.} of positive numbers tending to infinity such that for x>0
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(8.5) lim 1—-F(a.x) __ f(=logx)
e 1—F(a,2)+F(—a,x) 14+ f(—logx)
where-
f(t) € P*((log 7)/a) ,
and
(8.6) lim 1= Pl 0) + F(—a,s) _ -

n—oo 1—F(aa,,x)+F(—a’nx)
Sfor each integer p.

ProOF. We first note that a complex valued function ¢(tf) on the
real line is a ch.f. which satisfies, except for the factor ¢**, condition (0.5)
if and only if it admits the representation (8.1) with M(x) and N(x)
which are monotone non-decreasing and satisfy

(8.7 M@)=yM@'2), x>0,
(8.8) N@x)=rNG'=z), =<0,
(see [2], Section 58. See also Lemma 7 and the Proof of Theorem 8).

Necessity: A direct consequence of Lemma 10 and conditions (8.7)
and (8.8).

Sufficitency: Write p=(log y)/Ja and Fyx)=1—F(x)+F(—x). Then
the condition (8.6) becomes

8.9) Fy(axer?y=Fya,x)e""*(1+0(1)) as n—oo .,

Denote by M, the integer part of (Fi(a,))™*. Then we have for e’?<
x < ep(p+l),

M. Fya.e"**") < M, Fy(a,x) < M, Fy(a.e”) .
Using (8.9) we obtain
(8.10) z"e~" <lim M,Fy(a,x) <lim M,Fy(a,x) <z e .

Making use of the diagonal method and the the fact the M,F(a,x)
n=1,2, --. are monotone, we can show that there exist a monotone
non-increasing function R(x) on (0, o) and a subsequence { N(n)Fy(B,x)} of
the sequence {M, Fi(a,x)} such that at all points x of continuity of R(x)

(8.11) R(x) =1i}2 N(n)Fy(B,x) .

It follows from condition (8.9) that R(x) is of the form
(8.12) R(x)=x""¢(—log x), &) e P*(p) .
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The functions

___ f(=logx)
M(x)= —_1+f(—logm) R(x), x>0
and
_ 1
N(x)= 1T 7 (log 2D R(|z)), <0

satisfy equations (8.7) and (8.8), and we see from condition (8.5) that
(8.2) and (8.3) are both fulfilled. The proof of (8.4) proceeds along the
same line as that of Theorem 2 of Section 35, [1]. See also Theorem 9
of the next section.

9. Some properties of semi-stable distributions

THEOREM 10. Suppose that F belongs to the domain of partial at-
traction of a semi-stable distribution corresponding to (0.5).
Then the moment of positive order, E(| X|?) of F exists if and only

if a>B.

PrOOF. We assume without loss of generality that the distribution
F is symmetric about zero. Then the condition (8.6) of Theorem 9 takes
on the form

9.1) 1— F(a,xe’?)=e""*(1— F(a,x))(1+0(1)) as m—oo ,
where
p=(log )a .

Let ¢ be a sufficiently small positive number. Since e™***—0 as p—
oo, we have, for sufficiently large =,

(9.2) 1-F(a,e?)=¢""(1—F(a.)(1+e),
where
0=<|e,|<e, p=L2---.
We assume (9.2) and let ¢ and » be fixed.
On the one hand,

9.3) 2?dF(x) Zaler® ™ (1— F(a.e?))
=afer (1 —F(a,)) (14,07~

é C(ep(ﬂ—a))? ,

Saﬂgﬁ(ﬂ*“)
n

a, ef?
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where
C=afe’*(1-F(a,))(1+¢),
and on the other,

a.eP(P+1)

9.4) Sa"em z*dF(x) 2 ale’’[(1— F(a,e')) — (1 — F(a.e*®*))]

=ale”{(1—F(a,)e "™(1+¢,)
—(1—F(a,))e"** (1+¢,)}
g D(ep(ﬂ-“))P ,

where
D=(1—-F(a,))at(l1—e " —2¢)>0.

The theorem is a consequence of (9.8) and (9.4).

COROLLARY. The semi-stable distribution F' corresponding to (0.5)
has a moment E(| X|?) of positive order if and only if a> 8.

PROOF. Let N(n) be the integer part of "—1: N(n)=["—1]=
[y"]1—1. Then we have from (0.5)

e()=¢"(™"t)
=" "))
where
Gul)=¢" "G

Clearly as n— oo, [¢,() || o(y™t)|—1. It follows that
lim o™ (y™ " t)=o(t) .

This means that F' belongs to the domain of partial attraction of itself.
(See also [7] and [9].) (q.e.d.)

The following theorem is essentially contained in [7].

THEOREM 11. Distribution function F of a mon-degenerate semi-
stable distribution corresponding to (0.5) s differentiable infinitely many
times. If a=1 it is analytic in a neighbourhood of x=0, while if a>1
it 18 an entire function.

Proor. It follows from (0.5) that
(9.5) | olt) |=exp {—&(t) | £ ]},

where
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et)=4(—t)y=£G"""t)>0,
and that
(9.6) N= |1z1|r§1 &(t)>0.
By the inversion formula,
o ity ,—itz
9.7) F(x)—F(x0)=—21— S =™ e .
T J—o 1t

Differentiating both sides of (9.7) formally n+1 times,

o

(9_8) p(n)(w) = F(n+1)(x) —_ L—_ﬂ]-)_n S . t"e‘“”gp(t)dt .

2

Using (9.5) and (9.6) we obtain,

| p™() Iéi Sm tne—eu)madtgl[gl t"dt-l-gw t"e_m“dt]
2z J-= m LJo 1

§_1_ r (iﬂ) Ny /e L oo |
a

124

where N, is taken to be small. By the Stirling formula,

1imL[Lr(__"+1)M-m“)/a]”":{ ‘ et
n—e n! L wa a Nt if a=1.

(q.e.d.)
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CORRECTIONS TO

“ CHARACTERISTIC FUNCTIONS SATISFYING
A FUNCTIONAL EQUATION (I1)”

RYOICHI SHIMIZU

The author have found some errors in his paper with the above
mentioned title, published in the Ann. Inst. Statist. Math., 21 (1969),
391-405.

1. In order to obtain (6.35), it was implicitly supposed that e.(t)=0d.(4)/
o.(4), which is not true (or at least needs proof). Lemma 9 and Theo-
rem 7 should be omitted. The author is much indebted to Prof. B.
Ramachandran for his attention to this point.

2. Equation (9.2), on which the proofs of Theorems 9-10 depend, is not.
true. So we replace them by

THEOREM 9. Suppose that a distribution F satisfies conditions (8.5) and
(8.6) with a,=7"*, 0<a<2. Then F belongs to the domain of partial
attraction of a semi-stable distribution corresponding to (0.5). F has a
moment E(| X |*) of positive order if f<a, while E(| X | )=o0 if g>a.

Outline of the proof. Derivation of (8.2)-(8.3) needs no change.
(8.6) with a,=y"* implies that for sufficiently large =,

(%) Fya™*)=a""Fya"*?)(1+¢,)

or

(*%) Fya*z)=a""Fy(a,) (1+¢,) ,

where a=7"*=¢? (>1), r,=a", and |¢,|<¢, p=1,2,---. Let ¢ be so

small that e=(1+e¢)/a**<1 (when g<a) and d=(1—¢)/a*"*>1 (when > a).
Then we have (a?x,)’ Fy(a?x,)) =zt Fy(x,)c® (when p<a) and, (a*z,)’Fy(a’z,) <
z!Fy(x,)d? (when B>a). The last part of the Theorem follows from
these inequalities. This together with (xx), in turn, proves that under
the assumption of the Theorem, (8.4) holds.

8. Corollary to Theorem 10 needs some more explanation.
o(t)=lim P et) =1im ga[’"](a'"t) implies that lim[/"](1—F(a "x))=
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—M(x) and lim [{"]F(—a"z)=N(—z), from which (8.5) and (8.6) with
a,=r"*=a" follow. Hence we have only to show that E(|X|[)=co.
This follows from

a*Fya")~[;"1Fy(a")— —M(Q1)+N(—1)>0.
For further detailed discussion on this subject, see the subsequent

paper “On the domain of partial attraction of semi-stable distributions”
submitted to the present journal. :



