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1. Introduction

In this paper, we shall consider two models of queueing system such
as shown in the figure below. Model 1 is a GI/M/S(c0) type queueing
system with S equal exponential service channels in parallel, each hav-
ing mean service rate p/S. Model 2 is a GI/M/S—1(c) type queueing
system with (S—1) equal exponential service channels in parallel, each
having mean service rate p/(S—1). So, the total value of the mean
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service rate for Model 1 equals that for Model 2. The inter-arrival
times of the customers are supposed to be independent and identically
distributed with mean arrival rate 2. Customers are supposed to stay
there in, and to make a single queue in the order of their arrival as
the customer at the head of the queue enters the first queue that he
finds unoccupied.

As to these systems it is known that the system has steady state
probabilities if and only if 2/p<1 ([1], [3]).
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In regard to the mean waiting time in the queue, E[WS] for
Model 1 and E[W{*-"] for Model 2, one may think it as likely that the
inequality

EW{P<E[W{]

holds. However, as for the mean waiting times in the systems, E[W*]
for Model 1, and E[W-V] for Model 2, we can show that the inequality

E[W ] > E[W -]

holds.

The inequalities mentioned above may easily be proved straightfor-
wardly, in principle, by using the well-known result for the steady state
probabilities. However, if one attempts to do this, one will face serious
difficulties in calculation. Therefore, we shall compare the expected
values of the waiting times in another way.

2. Comparison of the mean waiting times

Let us examine the queueing system of Model 1. First, notice that
in a GI/M/S type queueing system the epochs of arrival are points of
regeneration. Let p;; be the probability of transition from state E, to
state E;. Here the system is said to be in state E, if there are n cus-
tomers at a given time. Then we have the transition matrix as follows;

- Do Doy O cecevenennnns —_
Dy Py j o ARRAAARRREEEE 0
p.m P.m 1222 . c . .. .......

Ps-10 DPs-11 Ds-12°° K ky 0-....
Ds,0 Ds,1 Ds -k, ky koo
Izs+1,o p.s+1,1 Ifs+1,z s lfa "iz Ifl teee

where p,;=k,_;,; (for 4, j2S—1), i.e., k, is the probability that precisely
r customers depart during a single inter-arrival time. Let p, (2=0,1,
2, -+-) be the steady state probability, and consider the vector D' =(p,
D1, D2y +++). Using the relation

pP=p,

we have the following equations :

(2.1) po=i§° DiDio 5
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(2.4)
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Pn=, i  PiPim (for S—2=2m=1),

=m—
o

Ds-1=Ps-2Ps-2,5-1F > lpikuz—s ’

i=8S—-

p"=i=§il Pkiyi—n  (for n=S).

Moreover, we have the equations

where

Concerning the steady state probability ¢; (=0, 1, 2,
with (S—1) servers, we similarly obtain the following equations:

(2.5)

(2.6)

@.7)

(2.8)

i+1

S—2

E Ds—144,5 =l (for ©:=0),

l”El_é k‘ .
i=0

Q=290
i=0

Qn= S ¢qim  (for S—3=m=1),
i=m-—1

ds-2=qs-395s-3, .s'-z'{"_%:_2 Qiloiys-s »

q..=i§11 gikiyia  (for n=S-1).

Now we shall start with the following

LEMMA. For n=S-—1, the ratios

remain constant irrespective of the value of n, and we have

PROOF. By using the equations (2.1), (2.2) and (2.3), we have

2.9)

a=dn | gt
Pa Da

a<ll, B>1.

kyps-1= i=28 Pdivi-s -

From the equations (2.5), (2.6), (2.7) and (2.8), we have
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(2.10) ko‘ls-1=t=zs qdisi-s -
On the other hand, p,, ¢, for n=S can be written as follows;
p=Aw",  q¢,=Bw",

where w is a constant on which is independent of the value S for the
present models ([3]). Therefore, we have

=—=a (for n=S).

By using (2.9) and (2.10), we get

Qs-1

Ps-1

=a.

Next we shall prove that « is less than unity.
If the value of « is not less than unity, then we have

Ps-2qs5-2,5-1<DPs-2°Ps-3,5-1

= 2_1 Dilisa-s

<Qs-295-2,5-1>5 (where gs_s 5s-1=k)
by using the equations

Dii41> ko (for S—2z=7),
and
@i, 041 <Dy,i41 (for S—2=7).

Thus we have

Ps-2<qs-z -

By the same argument we can obtain
S-3 S-3
Ps-39s-3,5-2<DPs-3Ps-3,5-2=Ds—2 E, Ps-2,;+Ps—1 jgo Ps-1,7F .
Using the inequality

gpik<§ Qx (for min(k, S—1)—1=7=0),
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we have

S—

3 §-3 s-3
Ds-2 P Ps-2,;+DPs1 E, Ps-1,;+Ds E Pyt

5-3 S-3 s-3

<Ps-z E, Qs-2,;FDs—1 jgo Qs-1,;+Ds jgo gs,;+--*
S~-3 1 S-3 §—3

=Ds-2 E Q52,4 +—{qS—l E QS-1,1+qs b qs,j‘l' v '} N
j=0 a j=0 i=0

from which we get
Ps-3<gs-3.
Repeating this process, we get
0:<4q; (for S—2=1=0).

Hence we have

S-2

1=31¢>> pta 3 p=l+(@—1) 3 .
1=0 i=8-1 i=8-1

1=0

‘This is contradictory to the assumption a=1. Accordingly, we have
a<l,

Now we shall prove g>1, since it is clear that B8 is a constant.
First we can obtain the relation

Qs-3<BDPs-z,
using the expression
Qs-3,5-205-3= > Qiza-s
i=5-2
=8 i=§—1 Pliss-s=PBPs-2Ps-2,5-15
and the inequality

Qs-8,5-2>Ps-2,5-1 +

Then we get the inequality

9s4<BDPs-s .

Because we have the relation
54 S=4 S—4
Qs-4,5-30s-1+=0qs-3 j%:, Qs-3,;t0s_2 E} Qs—2;+qs-1 jgo Qs-1,5+ -

S—4 S—4 St
<.3{Ps—z jgo Qs-3,;+Ds—1 jgo Qs-2,5+Ds E Qs-1,;+-- }
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S-3 S-3 S-3
<.3{ps-2 12=0 Ps—z,;+Dss jgo Ds-1,;+Ds E) Ps,;+-- }

=BDPs-sDs-3,5-1
<PBPs-3qs-1,5-3

since the inequality

S—4 S-3
jE=o QS—3+r,j< _fgo Ps—-24r,1 (for 7’20)

holds.
Continuing this iteration, we have for S—3=7¢=0
9:<BPus1>
which yields
B>1.

COROLLARY. For n=S-2, the inequality
qn>pn+l>qn+l
holds.

Now we shall prove the following

THEOREM 1. In regard to the mean waiting time for Model 1 and
Model 2, we have E[WS’]>E[W SV,

PrROOF. For the mean waiting time, in the systems we have

@.11) E[Wm]:l{S Spt 5 (i+1)p¢}
ﬂ i=0 i=8-1
and
1 ( S-2 ) .
2.12) EWel=—{S-1) S ¢+ 3 (z+1)q,}.
# =0 t=8-1

When we consider the case
S-2 S-2
S E’, p;=(S—-1) g q;,

we have
E[W(S)] > E[W(S —-l)] .
since

¢./p.=a<l  (for n=S—1)
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holds. So, it remains to investigate the case
§-2 S-2
(2.13) ST p<(S-1) T g

In this case, the inequality

o oo S—-2
(2.14) S > p>S X g+ S aq
i=85-1 i=§-1 i=0

holds. Thus we have
S-2 S-2
p{E[W®]-E[W*"]}>8 ?_40 p—(S—2) g}, a;

using the inequality (2.14) and p,>g¢, (for n=S—-1).
Hence if the relation

S—2 S-2
S % p:=(S—2) 120 q;

is satisfied, we obtain
E[W(S)]>E[W(S-l)] .

On the other hand, if

S-2 S-2
S iZﬂ 2:<(S—2) lgo q;,
we have

S i p:i>S =$_

i=8-1 i

s—2
q;+2 |§) q; .

1

Continuing this iteration, we can find the following fact;
In order to complete the proof, we have only to prove the relation

E[W(S)] > E[W(S —l)]

when
S-2

S-2
SYEp<>q.
i=0 i=0
In this case, however, we have
oo oo S-2
S > p>S 3 ¢.+(8-1) X g..
i=S-1 i=8-1 i=0
Hence we have

WEW®1-E <)} >S 5] p—(S-1) 5 0+ (8- T a
>0.
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THEOREM 2. We have the inequality
EW{PI<EW{E],
concerning the mean waiting time in the quéue.
Proor This follows from the relation
e{EW 21— E[W1}

={(gs-1—Ps)+2(qs —Ps+1)+3(@s+1—Dss2)+ - - -}
=(B—=1){pPs+2Ps11+3Ds42+--+}>0.

3. The case of Poisson arrivals

In the case of Poisson arrivals, we can compare explicitly the vari-
ance of the waiting time as well as the mean waiting time in the sys-
tems.

First, let us consider the queueing system of Model 1. Then we have
the moment generating function for the waiting time W,

) |

(3.1) My (0)=(

where

) _P§°(Sp)*
Si(1—p) ’

1
(S, (Sp)t
=l +S!(1—p)
p=2/p.

Using (3.1) we get the expected value E[W’] and the variance V[W ]
of the waiting time,

T

8)
i =

Soy's® S

3.2) E[W) =(*p_+_ ’

3.3) VIW®] = Sz(l—p)2+1:(5)(2—rc‘s’) .
£ (1—p)

Putting

515 G0 g,
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S—2

(S—-1)!' 2 {(S=1)p}" _ pes-»
7=0 n! ’

B®(1—p)=A®,
BE-D(1—p)=A%"",

we have

S — 1 (Sp)s
EW]= 1—
W] #(l_p){ prane el oS}

and

s-vy— 1 ((S=1)p)5!
A 1—-p)(S—1)} .
: : ¢(1—p) {A‘s“’-l-((s_. 1)p)s +(1—p)( )}

By simple calculation, we obtain
E[W®S]—-E[W“
= [S! { SS‘:,’ (S(S—1)p)"(SS "' —(S— 1)s-n-1) } e

n=0 n!

+ {B(S—l)(SP)S(l_p)+A(S)A(S—1)}]

X[ A +(Sp) HAS ™+ (S D) 11
>0.

Next we shall show
V[W(S)] >V[W(S—1)] .

For that, it is sufficient to prove

(3.4) ﬁ()i—z__——;;:—s)l>—2s+1+”w"()§2_—;)f:s"’) ,
since
201 — )% 4 7$5H (D — 7 ¢8)
VW= SA-gltaE-r)
Using
E[WS)>E[WS™],
we have
(3.5) 2SOl g

Therefore, if we show
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(S-l))
’

2S_.1g 2_(7".(8)_'_“
1-p

then the proof is completed. For that, it is sufficient to prove
(S-1)(A—p)z1—a“"".
By simple calculation, we obtain
1-29"—(S-1)1—p)
=-p(s-n{ % E=D 42 s))

x {5 G=Ds—1y101-p)+ (8- .

=) n!
This means that
S-1)(1-p)21—n“"",
from which the inequality
VIW ] >SVIWeS—]

follows.
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