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Summary

It is shown that under fairly general conditions the Bayes procedure
among the class of procedures invariant under a group of transforma-
tions which leave the statistical problem invariant, is really a Bayes or
formal Bayes procedure with respect to a prior measure which is con-
structed from the right Haar measure on the group and the specified
prior. This result is useful in problems where the principle of invari-
ance is applied. Such cases, involving the two action problem or a selec-
tion and ranking problem are given as examples.

1. Introduction

The purpose of this paper is to show that under fairly general
conditions the Bayes invariant procedure with respect to a prior, A, with-
in the class of invariant procedures is really a formal Bayes (for a de-
finition, see section 2, below) or Bayes procedure with respect to a cer-
tain prior measure. This measure is constructed from the right Haar
measure on the group of transformations leaving the problem invariant
(and giving rise to the class of invariant procedures in question) and
the specified prior, 2.

- This theorem eliminates the necessity of delineating the class of in-
variant procedures, among those available, before determining the Bayes
procedure among them. Since the principle of invariance is often used as
a means of reducing the class of decision procedures available (to a sim-
pler one where the selection of a procedure is easier), the computation
of the Bayes invariant procedure arises in a natural way. We give, as
an example, the application of this theorem to the two action problem,
where the group acting on the parameter space may create more than
two orbits. A selection problem is also treated from the same point of
view.

In as much as this theorem provides a representation of the Bayes

291



292 JAMES V. ZIDEK

invariant procedure, it yields, in the general problem, a precise mathe-
matical form in place of an otherwise somewhat indefinite quantity. The
theorem was used in this way by the author ([8], pp. 83-89) in proving
the inadmissibility, under squared error loss, of Pitman’s estimator of
the scale parameter of the exponential density when its location param-
eter is unknown.

In particular contexts like that just described, it is often easy to
deduce the consequences of the main result of this work. However, it
seems desirable to record the result once and for all, in at least the
generality given here, to avoid repetition of the argument involved, in
these special cases.

The method of proof is a straightforward generalization of that
used in proving the well-known result that if the group operating on the
parameter space does so in a simply transitive manner, the “best” in-
variant procedure is the formal Bayes procedure with respect to the
prior measure induced on the parameter space by the right Haar meas-
ure of this group. Some of the basic features of the proof are involved
in a result proved by Stein [5].

In section two we develop the necessary notation and give some of
the basic results from topological group theory that are used in the
sequel. A suitable reference for this material is the book of Nachbin [3].
The notion of a problem’s being invariant under a group is defined in
this same section.

The third section is devoted to the main theorem. In section four,
three applications of this theorem are given.

2. Notation and preliminary results

For convenience, the following convention is adopted. If D denotes
an abstract space, let s(D) be a, usually unspecified, s-algebra of subsets
of D. If D is a topological space, B(D) will denote the g-algebra of
Borel subsets of D. The usefulness of this convention will become ap-
parent below, where several point sets appear in the same context, each
possessing a different s-algebra.

Let (2, s(X)) denote a measurable space. Suppose a random variable,
X, is observed and takes its values in . Assume X is distributed ac-
cording to an unknown but unique member of a family,

(2.1) P={P;;0¢6}

of probability distributions on s(¥’), which is indexed by a set @, called
the parameter space. (O, s(@)) is a measurable space. After observing
X, an element or “action” is chosen at random from a set, .4, of ac-
tions according to a certain probability distribution. More precisely, if
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(A, s(A)) is a measurable space, this action is chosen by means of a
decision procedure chosen from a class 9 of decision procedures available
in the problem. Any element, (e, o) of @ is a mapping of s(A)XX¥
into the interval [0, 1] which satisfies the conditions, for each x¢ X,
8(°, x) is a probability distribution on s(_1) and for each A € s(_{), d(4, o)
is a measurable mapping of ¥ into [0,1]. If X =ux is observed, the ac-
tion selected is a random variable distributed according to d(°, x).

If the action chosen is a € . when X =x is observed, and X is dis-
tributed according to P,, 6 € @, a nonnegative loss, L(a, x, §) is incurred.
It is assumed that L is jointly measurable in its three arguments.

For any measurable function f : X —(—c0, o), let

(2.2) B =, F@APA)

whenever the latter quantity is defined. The risk, »(4, 6), of a procedure
d€ 9, when X is distributed by P,, 6 € @, is defined by

2.3) 0, 6)=E"{S , La, %, 0)3(da; X)} .

Suppose ¢ is a o-finite measure on (X, s(X)) which dominates the
family, P. Let, for each 8¢ 6, p(-|f) denote the Radon-Nikodym de-
rivative of P, with respect to ¢. Assume p(c[e) is jointly measurable
in its arguments.

Let II be a probability measure on s(@). A Bayes procedure with
respect to IT is defined to be any member of &), assuming that at least
one exists, which minimizes and makes finite

2.4) SG’"(”’ 3)dII(0)

as a function of 6. If a Bayes procedure exists, it is a member of 9
which, at X =2, minimizes as a function of 4, the quantity,

(2.5) S , S o L(a, 7, 0)p(|0)d1(9)3(da; o)

a.e. [¢]. As is clear from expression (2.5), any Bayes procedure with
respect to II depends on I7 only through the posterior probability dis-
tribution of 4,

Pp(o]o) : s(O)x X —[0, 1]
defined by

(2.6) PyB| X=0)=| swloano) /| s o),
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a.e. [¢], for every B € s(6).

From some points of view, it is reasonable to allow I7 to be a o-
finite measure. Provided P,(0| X=x)<oo a.e. [¢], I is called a prior
measure (improper if II(6)=o). We can define a formal posterior dis-
tribution of 6 using equation (2.6). A formal Bayes procdure is defined
as any member of 9 which, at X=2, minimizes, and makes finite

@.7) S . S o L@, 7, 0)Py(d0| X =x)s(da; 2)

a.e. [¢], as a function of 6. This is, of course, subject to the condition
that such a member of 9 exists. The condition

(2.8) |,76, o))< oo

will usually not hold when 7 is an improper prior measure and &, de-
notes the formal Bayes procedure with respect to 7.

Before defining the notion of a problem’s being invariant under a
group of transformations, we give some definitions and results from the
theory of topological groups.

Let G denote a locally compact topological group. g and v, respec-
tively, will denote the left and right Haar measures on B(G). 4 denotes
the modular function of G, and is a continuous homomorphism of G into
the multiplicative group of positive real numbers. For all B¢ 8(G) and
g€aq,

¢(gB)=p(B),

2.9) »(Bg)=u(B),
UB)=u(B™),

and

(2.10) 4(g)(B)=(Bg) ,

where B-'={y:y ‘e B} and if B,CG, i=1, 2,

(2.11) B.B,={y:y=g.9:, 9.€ B, 1=1,2}.

A locally compact group is called unimodular if 4=1. All locally
compact Abelian and compact groups are unimodular.

If H is a subgroup of G, G/H denotes the space of left cosets of
H in G. We define the natural mapping, f, of G onto G/H by

2.12) fl9)=9H,
where gH is that element of G/H which labels the coset
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(2.13) gH={y:y=gh, he H}.

Suppose G/H is endowed with the quotient topology. Then f is both
open and continuous.
The following lemma will be useful in section 3.

LEMMA 2.1. If H is a compact subgroup of G, 4 is constant on left
cosets of H.

ProOF. Suppose g; € g,H, g, and g, being in G. Then
gi'g. € H.

According to a theorem of Weil (see, for example, Nachbin, p. 138) if
4%(o) denotes the modular function on H,

4Hg)=4(g), geH.
Since H is compact, 4(g)=1, g € H, and, in particular,
A(gi'g:)=[4(g)] "' 4(g:)=1 .

Thus 4(g,)=4(g,)-
Define a measure 4 on (G/H, B(G/H)) by

(2.14) {(B¥)=p(f'B¥), B*cpG/H).

Then ¢ is a left invariant measure with respect to the group G, pro-
vided that the operation of G on G/H is defined in the natural way,
that is, if g* € G/H, and g*=f(¢’H), then gg* is defined by

(2.15) 99*=r(99'H) .

Furthermore 4 is finite on compact sets. For suppose K* € 8(G/H) is
a compact subset of G/H. Then there exists a compact set KCG for
which f(K)=K* (see, for example, Loomis [2], p. 111). Since H is
compact, KH is compact and

(2.16) KH=f"K*) € p@G).
But
(2.17) YE)=p(ff(KH))=p(KH)< .

Suppose G is a group of one-to-one transformations of a measurable
space (M, s(M)) onto itself. Then G is called, in our own terminology,
a measurable topological transformation group acting on the left of M,
provided the following conditions hold :

(i) for every element g € G, the mapping x—g(x) is a measurable
transformation of M onto itself.
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(ii) for every pair of elements, g; and g,, of G and every x € M.

(2.18) 9:(9:(%))=(9:92) (%) .

(iii) the bivariate mapping, (g, )—g(%) is simultaneously measurable
in g and =z.

We will drop the term “topological” in “measurable topological
transformation group” if we do not assume G is a topological group,
but rather, that (G, s(G)) is a measurable space.

Observe, in particular, that if e denotes the identity of G, (ii) im-
plies ex=2x for each x € M.

If M* is an invariant subspace of M (i.e., GM*=M*), then we can
define the orbit space, M*/G of G acting on M*. Any point of M*/G
labels a subset of M* which has the property that if z, and x, are two
of its members, there exists an element, g€G, such that z,=gu,. If
M*|G is endowed with the quotient topology, the natural mapping of
M* onto M*/G is continuous and open. In making this remark we are,
of course, implicitly assuming M* is a topological space.

If M*/G reduces to a point, G is said to act transitively on M * If
for every pair of points, z; and x, of M*, there exists exactly one ele-
ment, g € G, for which z,=g=,, G is said to act simply transitively or
exactly transitively on M*.

This concludes the summary of the basic elements of topological
group and transformation group theory necessary for the results of the
next section. We now discuss the notion of a statistical problem’s being
invariant under a group and the invariance of a statistical procedure.

Suppose G is a locally compact, measurable topological transforma-
tion group which acts on the left of the sample space, ¥. Assume there

exist measurable transformation groups & and &G, each homomorphic to

@ such that every element of & and & is a bimeasurable, one-to-one trans-
formation of © and I, respectively, onto itself. Under these homo-

morphic mappings, which are assumed to be measurable, let he& and
% € G correspond to the element k€ &, and assume

(2.19) Pi(hB)=PJ(B), 0¢6, Bes(X)
and
(2.20) Liha, hz, ho)=L(a, x,0), ac, z€X, 0¢6.

The problem is then said to be invariant under the group g.
An element 6 € @ is said to be an invariant procedure under the
group G if

(2.21) 0(g7'A; g7'x)=0(A; ), xeX, Acs(A).
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D, P will denote the subeclass of all those procedures which are in-
variant under &. The maximal invariant under the group & is any
random variable ¢ for which #(gx)=t(z), x€ ¥ and ge¢ &, and whose
image space is isomorphic to X/G. We shall use the symbol ~ to mean
“is isomorphic to.”

3. A representation of Bayes invariant procedures
We now add the assumptions necessary to the present work:
AssumMPTION L.

3.1) X=G|H xX*

where X*~%/G and 4 is a compact subgroup of G which leaves a
particular point, say x,, invariant, that is,

(3.2) ﬂ[={h:h€g, tho:mo}.

If he d, ha=a, ac .
Topologize G4 with the quotient topology and let = denote the
continuous, open, natural mapping of & onto G/ 4. Assume

(3-3) $(X)=B(G|IH) < s(X¥)

where s(X*) is unspecified.

If G operates exactly transitively on each orbit represented in X/G,
Assumption I holds with 4 ={e}, provided X is properly labelled.
Keifer ([1], p. 584, p. 585) gives examples where, in one case, Assumption
I holds with {e} properly contained in 4, and another where it fails
to hold.

Assumption I means that a random variable (G* X*) is observed,
where X* is a maximal invariant and G* takes its values in G/ 9. We
define the operation of G on the range of this random variable as fol-
lows. If ge @ and z=(g% 2*) e X,

(3.4) gr=(gg¥, x*),

where gg¥ is defined as in equation (2.15).
In Assumption I 4 is assumed compact since we shall be interested
in integrals of the form

(3.5) {4 FE@te)

where f is some nonnegative real valued measurable function, and if 4
were not compact, this integral would usually be infinite. p, of course,
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denotes the left Haar measure of G.
Define a measure p* on B(G/9) by

(3.6) p*(B*)=p(z'B¥),  B*epG|K).
Let p be a given, o-finite measure on s(XX*).

AssuMPTION II. The family &, given in equation (2.1), is dominated
by u*Xop.

The following lemma describes a property associated with the density
functions, p(g*, 2*|6), of members of P, which will be used frequently
in this section.

LEmMMmA 3.1.
3.7 plg*, z* | g.0)=p(g-'g*, x*|6)  a.e. [p*Xp],
when (g%, x*) € X, 0€6, and ge G.

PrOOF. Let G*XB* denote any measurable rectangle in s(X). Then

[ oo o 2(T% % | 504G p(a)
= P,/(G*X B¥)
=P,(g7'G* X B¥)

=, i o P0% 7 |00 ¥)dola¥)
= o e PO, ¥ O)¥@¥)pl0)

The conclusion is an immediate consequence of the uniqueness of the
Radon-Nikodym derivative.

It is assumed that p(e, o|o) can be chosen so that it is jointly meas-
urable in its three arguments.

Denote 6/G by 6*. s(6*) is unspecified but assumed given. Let @
be any one-to-one measurable mapping (assuming one exists) of ©* into
6 for which

(3.8) #(0%) e z1(6%), 6* € 6%,

where 7 denotes the natural mapping of ® onto ©*. Let T, denote the
measurable mapping of (& X6*, f(&G) X s(6*)) onto (6, s()) which is given
by

(3.9) Ty(g, 0*)=g¢(0) .

AssuMPTION III. There exists a one-to-one measurable transforma-
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tion ¢:6*—6 satisfying condition (3.8) for which {g: gg(6*)=¢(%)} is
a compact subset of &, 6* € 6*,

Let 2 be a given probability measure on s(6*). Define a measure
A on s(6) by

(3.10) AB)=@vXxA)T;'B, Bes(h),
where v denotes the right Haar measure on G.
LEMMA 3.2. 4 s independent of the choice of ¢.

PrOOF. Let ¢, and ¢, be two one-to-one measurable mappings of
6* into 6, each of which satisfies (3.8). Define a one-to-one mapping,
r, of 6* into & which satisfies

() =7(0F)p(0%), 0% € 6*.

Then, if 4; (1=1, 2) corresponds to T, in the manner described by equa-
tion (8.10), and B € (),

4(B)=| o »10 : G440%) € BYAAE¥)
= (g »10: aTI810%) € BYaao)
=4(B)
since

v{g : GTE)6(6*) € B
—u({g: (6" € B)[r(6"])
—»{g: 566 € B}

The conclusion of this lemma follows from this observation.

We shall now show that it is meaningful to define a formal posterior
distribution with respect to 4. Let (g% z*)€ X and g. be any fixed
element of z~!(g*). Then

[o Pl0%, 2% | 0a40)
={ge | ¢ 202, % 18010
=g o Plrta™100), 2% | $0¥dsta)da
= W/de) [, | , pa(9), 2% | $0"Ddte)Ia0")

Thus
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(3.11) g 6 (g¥, x* | 6)dA(6)
= W) g4 | o Pl 2| $ENHg")A0*)

where G*=G/9(. Since 4 is compact, we conclude, from Lemma 3.1
that this last quantity does not depend on the choice of g in z~'(g¥).
Furthermore, if we integrate the left hand side of equation (3.11) with
respect to p, we conclude from this equation, that the result is 1/4(g.)
which is finite. Thus

3.12) S o 20, 7| 0)dA0) <00,  ace. [1*xp].
For convenience, define a real valued function K* on X* by
(3.13) K%)=, | 1 90*, 2% | 604069

xz* € Z*. Then the formal posterior density function of ¢ given (g¥, x*)
with respect to 4, is given by

P01 0%, 2 =plg%, 2*10) /|, slo*, 2* | 0)dA(0),
or, using equation (3.11)

(8.14) p(0 | g¥, x*)=A(g,)p(g¥, x* | 6)/K(x*) ,

where g. is any element of z~Y(g¥).

Let &' denote the family of all probability distributions on (_4, s(_1)).
To determine the formal Bayes procedure with respect to A consider,
for (g¥, x*) e X,

(3.15) Pig ) S o S ¢ S _ La, (g%, @), g4(6*))

X dP(a)p(g(6%) | g%, a*)dr(g)dA(6*) .

We shall show that under Assumption IV, below, the formal Bayes pro-
cedure we obtain, is the Bayes invariant procedure with respect to 2.
Observe that

(3.16) o\ o) s Llta, (=g, o), BTg)g(0*)dP(a)

p(h~'g¥, o | B9)p(6%) 4
X P 0D dgyaae)

={gulo 1., Tla, (hot62, 24, got0aP(ha)
X p(@(6%) | h~'g*, x*)du(g)da(6%) ,
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he Q. Suppose, for almost all [p*X p] pairs, (g% z*), the infimum in ex-
pression (3.15) is attained (and is finite) at a point of ¢’ which we de-
note by 8(e; g, #*). Then as a consequence of equation (3.16), this in-

fimum is attained and is finite at the point, 6(h~'(c); h~'g¥, a*) for each
h e Q. If e denotes the identity of G, e*=x=(e), and we choose g, € 7'(g¥),
then the same is true, in particular, for

(8.17) a(g:'(e); ¥, a¥) .
Suppose g.; and g., are both elements of =7'(g*). Then
8(07(=); €, 2)=0(§:{g.0:) (<); €%, a%)
and consequently
(3.13) 8(g3'(0); e*, x*)=0(g5'(o); ¥, «¥),

since g..g3' € 4 and, by Assumption I, g.,g5'a=a for every a € A. Define
ér by

(3.19) 6x(o; gF, *)=08(97"(0); €*, x*)

where n(g.)=g*. By equation (3.18), J is well defined. Furthermore,
for each he G,

(3.20) 8x(h1(o); B™ig*, x¥)=08(§ hh (o) e, ¥
=d5(c; g¥, %),

so that if 6, were a procedure, as we assume in Assumption IV, it would
be invariant.

AssumMPTION IV. For almost all [p*Xp] pairs, (g% z*) e X, there
exists at least one member of &', denoted by d(o; g, «*) which achieves
and makes finite, the infimum in expression (3.15). s, defined in equa-
tion (3.19) is an element of 9.

The result contained in the following lemma is well-known and its
proof is omitted.

LEMMA 3.3. If o€ D, 7(6,8)=r(gh,9), ge G, 0¢€6.

An important consequence of this lemma is that we can, in speak-
ing of Bayes invariant procedures, suppose the prior distribution is on
s(6%*).

The main result of this paper now follows as a simple consequence
of the foregoing lemmas.

THEOREM 3.1. Under Assumption 1-1V, the Bayes or formal Bayes
procedure with respect to the prior measure A (see equation (3.10)), defined
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by equation (3.19), is a Bayes invariant procedure with respect to the
given prior 2, assuming one exists.

ProOF. Let R(4,8) denote the Bayes risk of an invariant procedure,
8, with respect to the prior, 1, on (6%, s(6*)), that is,
B3 0)=|,,{ ||y L@ 0D 2, 9(6%)
X &(da; =(g), *)p(x(g), x* | $(6%))dp(g)dp(x*)dA(6*) .
Then for any element g.€ G,

B, 0={,. o0, L@ (a0, =), 9(0%)

Xd(da; =(g~'g.), ©*) p(”(g_lg')}{x(;!k?w*))d(g')

X du(g)dA(0*) K@ ¥)dp(a*)

={ e o) |4 e (@), 2%, B(*(da; w(g), 2%)
X PIHE) | 2(0.), 7*)dol0)AO" K(*)dp(a*)

2 [ loulo | La 02, 2, 3o0*4(da; (0, %)

X p(g(6*) | n(g.), x*)dv(g)dA(0*) K(=*)dp(x*)
=R(2, o) .

Thus, d» is a Bayes invariant procedure with respect to 2.

It seems likely that Theorem 3.1, where applicable, will be easy to
apply, at least when v is known explicitly. The method can be some-
what imprecisely summarized as follows.

Suppose G, G, G, 6, A, ¥=G|IH x¥|G, L and P are given. As-
sume P,€ P is dominated by a o-finite measure p*Xp, where p* is the
left invariant, positive, Borel measure on G/9(. Let p(g*, x*|6) be the
density of P, with respect to p*Xp, and ¢ denote any 1:1 mapping of
6*=6/G into ©® which maps points of 6* into the orbits they label.
Then the Bayes invariant procedure with respect to a prior, 1, on 6%,
evaluated at (g* 2*) € &, is that probability measure which minimizes
as a function of P,

Se* S Q S _ L@ (g%, %), g(6*))dP(a)
X D(GP(6*) | g, x*)dv(9)dA(6%) ,

where p(f|z) is the posterior density of ¢ given X=ux.
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4. Applications

We shall now discuss some examples in which this theorem is applied.
The first concerns hypothesis testing and constitutes a special case of
some interest in its own right.

Example 1. (Hypothesis Testing): let
4.1) A={a,, a;}
6=6,U6,,
where 6, and 6, are each nonempty and disjoint, and
1, 6¢6;
4.2) L(a,, x, 0)={
0, 006,
i=1,2, x€X. Assume G6,=6,, i=1,2. Let 6} denote 6,/G so that
(4.3) 6*=6}FU65.

In this case expression (3.15) can be written
@y int | [ s % 135000 K@st0)
xdxe)+1-p) |, [, par, 2% | 500N K )
xdslg)da")}

where 2 is the prior probability distribution on (6*, s(6*)). This infimum
is attained by p=1 or p=0 according as the fuction 7': X—[0, co], de-
fined by

(4.5) T(g%, 5=, |50 20" 2 |GBOM dx0" drta) /
[ {6 P07 2 1 00")207)0)

is greater than 1 or less than 1. When T(g¥ z*)=1, the infimum is

attained at any point p €[0,1]. For definiteness we choose 65 as
1, T(gxz*)=<1
(4.6) or(as; g¥, x¥)= {
0, T(g¥, x*)>1.

Since T(e, o) is invariant any specification of 6 will, of course, be in-
variant. J, is a Bayes invariant procedure with respect to 2 by Theo-
rem 3.1.
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In the case where 6F and 6} both reduce to a point, say 6F in the
case of OF, 1=1,2, T can be written,

%) T(g¥, 2¥)=(1—) | , plo*, =* | GHONNMg) /
AW R

where 7,=4(6¥). One would expect =,T(c, o)/(1—x) to represent the
ratio of the densities of the maximal invariant under the respective
hypothesis 6, and 6,. This turns out to be the case under fairly gen-
eral circumstances, and represents one, among several theorems which
have come to be frequently called Stein’s theorem. Versions of this
theorem are given by Schwartz [4] and Wijsman [7].

In the present context, this theorem is easily proved. For if
Sf(o| #(6¥)) denotes the density of the maximal invariant under ©,, i=1, 2,
and g. € 77Y(g¥),

F@* 1 90m)= , plate), 2 901)dp(0)
=4(@),, pr(g~'0.), 2| $E)dg)

Thus

“.8) F@* | 90M)=4() | , Plg¥, 2% | G601)A),
and the asserted result follows.

Ezxample 2. (Bayes Scale Invariant Estimators). Here
(4.9) 0= A =(—o0, )X (0, c0)
I(a, x, 6)=h[(a,— )]s, (a,—a)/a] ,
where £ is a nonnegative measurable function, a=(a,, @), 6=(g, ¢), and
(4.10) o |0)=r((x—EW]o) ,

where z ¢ R°=2, .and £=(1,1,---,1) € R*. The problem remains in-
variant under the multiplicative group, &, of positive real numbers under
which

(4'11) r—cx, (#r 0‘)-—’(0{.!, 00') ’ (aly a'z)_’(cals Caz) .
Observe

(4.12) X=GxR'x{—-1,0,1},
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where R*'x{—1,0,1} constitutes the range of the maximal invariant
which is (s, « - -, x,/s, sgnx,) when X=(z,, ---,2,) is observed, where
s=(3 «%)"* and sgnx=—1, 0,1 according as x is negative, zero, or posi-

tive. ©/G=(—oo, ) and a Bayes invariant procedure is obtained by
minimizing, for each z,

(4.13) S: S”h(ﬂ—n, %—1)f(%—€r})%d2(v) ,

0 [ c

as a function of a, and a,. In obtaining the expression, the mapping
#, of 6/G into © has been taken to be

(4.14) $()=(n1).

In the important special case of quadratic loss, where h(z, y)=x*+1%, it
follows that the Bayes invariant estimators of p an ¢ are

(4.15) S: S: Ly <—”:——6’v>%dl(v)/D
and

B Y Car
where

(4.17) D= Sl S: ;1; f<%——€77>iiaidx(77) .

Example 3. (Selection and Ranking Problems). In selection and
ranking problems, the reduction to invariant procedures seems quite
natural. The results of Theorem 3.1 apply to this class of problems and,
as an example, we treat the selection problem described by Studden [6]
and obtain a slight generalization of a result given by him.

In this example ¥ and € are arbitrary subsets of R* which remain
invariant under the permutation group &. In a somewhat imprecise
notation, assume, for ge€ G,

(4‘18) g{'ib ct Y im} = {g("l)y M g(im)} ’
and
(4.19) 9Y=Wn> -+ Y)»  YERF,

where 4,€(1,2, ---, k), r=1,2,---,m, and h=g7..
The action space 4 is the set of all 2* subsets of {1,2, ---, k}, the
objective of the statistician being to select a subset containing that in-
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teger for which the corresponding co-ordinate of 6 is largest among its
k co-ordinates.

For this problem, ¢=G=G
6*2{069:01§_"‘§0k}, x*={x6%:wlé"‘§xk},

and

(4.20) X=GxXX*.

The loss function, L, is given by

(4.21) L(g6*, a)=> L(g6*)+ L{1—%.(g(k))] ,

where 9*=(6F, - - -, 6F) € 6%, L(6) is the loss whenever the integer 1 is

included in the statistician’s selection, X,(c) is the characteristic function
of ac i, and L is a given positive constant which represents the loss
for an incorrect selection.

Suppose p*(xi, - - -, ;| §) denotes the density, with respect to a o-finite
measure ¢ on s(X), of a random variable X taking its values in X. So
that the problem may remain invariant under G, we require ¢ to be
invariant under &,

(4.22) plgx | g8)=p(x | 0)
and
(4.23) L(6)=L,(g6), 9g¢€&.

Let @ denote the isomorphic mapping of X onto & xX*. Then the
random variable, @#(X), has density p(c, o|6) defined by

(4.24) (g, x*| 0)=p*(xF, - -+, 25 | 0),

g€ @G, x*e ¥*, almost everywhere with respect to the measure px¢ on
8(Q) X s(€*), where p denotes the measure which assigns unit mass to
each point of @ and s(Q) is the set of all subsets of &.

Let 5 denote the class of all probability distributions on the set of
all subsets of .4, and &,, the set {(&, --+, &) : 0561, 1=1,2, <o, k).
According to Theorem 3.1, the Bayes invariant procedure with respect
to a prior measure 7 on 6*, evaluated at y.=(g., 2%), is that member of
£ which minimizes, as a function of &,

(4.25) 3, 5@z Lom-Luew)]

X p(y. | g8*)dn(6*) .

But the infimum of this last expression over £ is
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(4.26) inf 3 = aFEJ: S or S@IL(g06%)— L1(9(k))}
t€a

X p(y. | g6*)dn(6%)
= int 3900 [, | 33 0P~ Lot 09
j=1 :

[ X3 £ri=1
X dn(6%) ,
where
(4.27) py.|6¥)= = py.lg6%), Li=L k.
g:gti=j
Let
(4.28) T ()= | g LiO*Pw. 190

Then, it follows from equation (4.26), that if ¢(y.)=(4.(¥.), - -, d(y.)) is
the Bayes invariant procedure with respect to 7,

1, T@I<L |y, patu.| #99dn()
(4.29) By =

0, otherwise.

In determining this procedure, it suffices to compute &:(y.), since the
remaining ¢, are determined by the invariance of ¢. Furthermore, since
P~ G X F*, the procedure can readily be stated in terms of xz. Making
the obvious change in the domains of 7T} and pu(e, °|6%),

L, Tx)<L K 6%)drn(0*
(4.30) ¢k(w)={ T(=) Se*p (x| 6%)dn(6%)

0, otherwise.

A special case to which this result applies is the “random slippage
problem.” Here 67=6., j=1,2,---, k-1, where 4. is a specified constant
while 6%=6.+4, where 4 is a positive random variable with distribution
. It is assumed L,=1, i=1, ---,k, and

(4.31) (| 6)= ;; C0)e .
=1
It is easily shown that the Bayes invariant procedure, ¢, is specified by

1, THz)<L S“’ C(0.+ 3)e*xdn(5)
(4.32) bu(@) = 0

0, otherwise,
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where

(4.33) THa)=> S‘” C(0.+8)edn(5) .
Jj=1J0

As Studden points out, ¢ can be interpreted as that procedure which
minimizes, among all invariant procedures, the expected size of the
selected subset, subject to the condition that the (unconditional) prob-
ability of correct selection is at least as great as that for ¢.
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