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1. Introduction and summary

In this paper the use of least squares method for the identification
of time-invariant discrete-time linear systems is discussed. The out-
put of the system is assumed to contain an additive disturbance besides
the response to the input. It is well known that there is an inherent
difficulty in the least squares method for the application to the case
where the correlation between the input and the disturbance exists. The
case where a feedback loop connects the output to the input is a typical
one of this situation. In a recent paper [1] the present author proposed
an identification procedure, which was tentatively called predictive iden-
tification, of noisy linear feedback systems. The one-sided moving aver-
age representation of the disturbance played a fundamental role for the
development of the procedure. , '

In this paper, the representation of the disturbance as the sum of
the effect of its past history and the present innovation is called the
predictive representation of the process and its general implication for
the identification problem is discussed. For linear systems the autore-
gressive process is adopted as a basic model of the disturbance and vari-
ous methods of estimation are developed for the identification of the
system with possible feedback from the output to the input. It is ob-
served that the model developed for the consistency of the estimate
leads us to an asymptotically efficient estimate, which was first intro-
duced by J. Durbin [2], when the additive disturbance is independent
of the input.

Based on the results of discussion of the statistical characteristics of
the proposed estimates, a practical computation scheme for the general
use of identification is proposed. Numerical examples are given to pro-
vide a feeling of the relative efficiencies of the estimates. An example
of application of ordinary method of least squares to the case with feed-
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back is given to show the difference from the result obtained by our
identification procedure.

It is further pointed out that the estimate of the frequency response
function obtained by taking the numerical Fourier transform of the esti-
mate of the impulse response obtained by the present procedure is con-
sistent even when the feedback exists and also asymptotically efficient
if the feedback is absent and thus will generally be superior to that
obtained by the conventional cross-spectral method which is not applica-
ble to the case with feedback [3]. This consideration suggests that this
new approach will eventually replace the conventional cross-spectral ap-
proach in many practical applications. The only possible drawback of
the present time domain approach will be the necessity of the strong
assumption of independency of the innovation process of the noise for
the evaluation of the sampling variabilities of the estimate, while in the
spectral approach the basic local Gaussian assumption of the Fourier
transforms of the data sequence generally did not mean a serious re-
striction ([4], p. 197).

2. Basic model

In this paper we consider a linear system with discrete time param-
eter n(=0, +1, +2, --.) and described by the relation

K M
aco(n)=§1 2 &m@i(n—m)+u(n) ,
where xi(n) is the output and {z,(n); j=1,2, ..., K} is the input of the
system and w(n) is the additive disturbance. Our problem of identifica-
tion is to get good estimates of the impulse response functions {a,;
m=0,1, ---, M} (5=1,2, ---, K) (: identification of the system) and also
of the statistical characteristics of u(n) (: identification of the noise)
from the observation of {xy(n), z,(n), - - -, x(n)}.

For the sake of simplicity of the following discussions and also from
its practical plausibility in many practical applications we assume that
{xo(n), Zi(n), - -+, xL(n), u(n)} forms a strictly stationary ergodic stochastic
process with zero mean vector and finite variance matrix. Thus we can
expect that the time averages of various statistics over an observed data
converge to their expectations, or the ensemble averages, with the ex-
ception of probability zero as the data length is increased to infinity.

Now if the ordinary method of least squares is applied to the ob-
served data {x,(n), 2,(n), z(n—1), - - -, 2, (n— M), x(n), T(n—1), « - -, (N —
M); n=1,2, ---, N} the estimate {d,,}, which we shall hereafter call
OLS (ordinary least squares) estimate, of {a;.} is given as {a;,} which



A METHOD OF STATISTICAL IDENTIFICATION OF DISCRETE TIME 227

minimizes é‘,l <aco(n) ——é mé a,mw,(n-m)>z. {a;»} is the solution of the
normal equation

Ca=b, »
where C is a (M+1)K X(M+1)K matrix of which ((k—1)(M+1)+1+1,
(G—1)(M+1)4+m+1) element is —]1\—7— né xy(n—l)x;(n—m) and G and b are
(M+1)K x1 matrices, or vectors, with (k—1)(M+1)+1+1,1) elements
equal to @, and 71\’—- n% x(n—1)xy(n), respectively.

From the relation

M

§1 zi(n—1)xy(n)= i @ jm é r(n—lx A(n—m) +é Zy(n—lu(n)

m=0 n=

I
~

J

-

we get

b=Ca+d,
where a and d are the (M+1)K X1 matrices with (k—1)(M+1)+1+1,1)
elements equal to a,, and %’é 2x(n—lu(n), respectively. Assuming
the non-singularity of C we get

a=a+C7'd.

Thus, if the (M+1)K X (M +1)K matrix D which is obtained by re-
placing % é‘,l zi(n—Ux;(n—m) in C by Ex(n—1)x;(n—m) is non-singular,
@ converges with probability one to a+D"'d, as N tends to infinity,
where d. is given by replacing %né Zy(n—Du(n) in d by Ex(n—lu(n).

From this result we can see that the condition d=0 or Ex.(n—l)u(n)=0
(k=1,2,---,M, 1=0,1, ---, M) is essential for the OLS estimate {4,,}
to be a consistent estimate of {a,,}, i.e., an estimate which converges
stochastically to {a,.}.

In the rest of this paper we shall assume the convergence in prob-
ability of a consistent estimate.

3. Implication of the predictive representation

As was seen at the end of the preceding section, the condition of
orthogonality, or uncorrelatedness, of u(n) to {x,(n—m)} (7=1,2, ---, K,
m=0,1, ---, M) is essential to get a consistent estimate of {a;,} by the
ordinary least squares method. This condition does not hold when there
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is a feedback which connects the output z,(n) to the input {z,(n—m)}.
Thus the ordinary method of least squares can not be applied to this
practically important case [3].

Now if the correlation between the additive disturbance and the in-
put is due to the existence of some physically realizable path from u(n)
to {x;(n)}, which produces some output in {x,(n)} from the present and
past values of w(n), the correlation will be minimized by transforming
the original model into the form where the disturbance is represented
by its innovation, i.e., the residual of u(n) after the deletion of the
effect of its past history. Thus if there exists a representation, which
we shall call a predictive representation, of u(n)

w(n)=wmn)+g(u(n—1), u(n—2), ---),

where the innovation w(n) is independent of w(n—1), w(n—2), --- and
the effect of infinitely remote past is vanishing in u(n), we shall be able,
for a linear g, to develop a transformation of the original model to get
the the relation

K M
yo(n)=j2l 23 asmys(n—m)+wln),

where y,(n)=h{z,(s); s<n} is obtained by applying the transformation
which produced w(n)=h{u(s); s<n} from {u(n)} to {z;(n)}. In this repre-
sentation we can expect the minimum possible correlation between w(n)
and {y,(n—m)} under the physical realizability assumption of the path
from u(n) to x,(n). The effects of infinitely remote past histories should
be vanishing in y,(n)s.

If we are going to limit the path from the output to the input to
be linear we shall be able to replace the assumption of independency of
w(n) to w(n—1), u(n—2), --- in the definition of the predictive repre-
sentation of u(n) by the weaker assumption of orthogonality to develop
the discussion. We shall call this the weak predictive representation of
u(n) when the distinction is necessary. For a purely non-deterministic
w(n) ([5], p. 75) we have this weak predictive representation in the sense
of mean square with linear g, i.e., g(u(n—1), u(n—2), ---) is the linear
projection of u(n) on the space spanned by u(n—1), w(n—2), ---, and it
quite naturally leads us to the following model of u(n) for practical ap-
plications :

w()= 3 eauln—1)+u(n)

where w(n) is a white noise with E(w(n))=d¢ (>0) and Ew(n)w(m)=0

(n#m) and the roots of the characteristic equation l—é ¢,2'=0 are all
=1
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lying outside the unit circle [6]. Throughout the rest of this paper we
shall assume that u(n) is given by this model.

The practical utility of the present model in relation to the identi-
fication of linear noisy feedback systems was discussed in detail in [1]
and some of the practical applications of the method given in the paper
were discussed in [7]. Our present observation shows that the predic-
tive representation, weak or non-weak, of the disturbance has a definite
physical meaning in the identification problem.

E. Parzen ([8], sec. 6) has stressed the importance of the role of
white disturbance model to make the least squares estimates efficient
ones in synthesizing a linear model for multiple time series. It seems
that the existence and use of the white disturbance representation of a
noisy system are deeply rooted in the physical realizability of the sys-
tem and thus the whitening of the disturbance should be realized through
its predictive representation.

Our observation also suggests the fact that the identification of the
structure of the system will essentially be impossible if u(n) contains an
output of some physically realizable path with the input {z;(n)}.

4. Consistent estimators

In this section, our problem is to get estimates of {a;,}, {c;} and
@=FEuwn) from a record of {zy(n), z(n), -+, x(n)} which follows the
model

dh

M=

wo(n) =

2 3 g n—m)+uln)

0

I
3
I

u(n)= é cu(n—0)+wn),

where the structure of u(n) is as was assumed in the preceding section.

For the purpose of evaluation of sampling variabilities of the esti-
mates we further assume that w(n) is independent of the past of w(n),
ie., {u(n—10)} (=1,2, ---), and of the present and past of the input, i.e.,
{x,(m—m)} (5=1,2, -+, K, m=0,1,2, ---). Accordingly, w(n) is inde-
pendent of the past of xz,(n), i.e., x(n—10) (=12, ---).

It is also assumed that there does not exist any strict linear relation
within {z,(n); 7=0,1,---, K, n=0, £1, £2,---} so that any variance
matrix of finite number of elements of the process is non-singular.

We consider the situation where a record {xy(n), - - -, Z(n—L), x,(n),
cov,mn—L—M), -+, mg(n), - -+, xx(n—L—M); n=1,2, ---, N} is given.

1. SLS estimate
First we shall discuss a simple estimation procedure which was ori-
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ginally developed in [1] and will hereafter be called as SLS (simplified
least squares) estimation procedure. By a linear transformation of the
original model we get a relation

L K M+L
x(n)= > ew(n—1)+ ?:1 = Az (n—m)+w(n),
where
L
A/m =Ajm— lgl Cjm—y

and a;,s with m<0 are considered to be zeros. As is obvious from the
discussion of section 2 the ordinary method of least squares applied to
the data {a(n), - - -, (n—L), z(n), - - -, &x(n—M—L), - - -, £(n), - - -, Tx(n—

M-L); n=1,2, ..., N} yields a consistent estimates {¢,} and {ﬁ,,,,} of
{c.} and {A,,]}, respectively. From the recurrence relation

L
Cin=A;n+ lgl Cillym—y

a consistent estimate {d,,} of {a,.} is obtained as follows:
G;,=0 (m<0 or m>M)

djo':Ajo
A -~ L A A
ajm.:Ajm'!'l_z; cla'jm—l (m:]-y 2; tt M) s

a consistent estimate s* of ¢*=FEuw’(n) is given by
2

) 1 N L N K M+L
#=1 3 (5= 3 bann—0— 5 ST A fn—m)

To evaluate the asymptotic sampling variabilities of our estimates we
assume that the simultaneous distribution of x,w(m)=N-12 iv} z;(n—m)-
n=1

w(n) converges to a multi-dimensional Gaussian distribution. Especially
this is the case for the linear model treated in the former paper [1], if
only the white noise is composed of mutually in dependent random vari-
ables.

If we define de,=N'%¢,—c,) and 44,=N"A,,—A,,) it can be
shown that
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— dc, - ~ xow(l)‘ -
de, zow(L)
44, x,w(0)
: =~ R"l E ,
A.Aun- L xlw(M +L)
A5 2 xw(0)
— A.Amﬂz, - — xK';U(M‘}‘L) -
where R is the variance matrix of (x(n—1), - - -, &y(n—L), 2y(n), - - -, 2,(n—

M—L), -+, xx(n), - - -, xx(n—M—L)) and the sign = means that the both
side members of the sign have one and the same limiting distribution.
Under some mild assumption, such as the mutual independence of the
variables in the white noise of the model of [1], the variance matrix of
R'[xow(1), - - -, xxw(M+ L))’ converges to that of the limit distribution,
where / denotes the tranposed matrix. This type of convergence is here-
after assumed and the variance matrix of this limit distribution is de-
noted by

. [de, |1y (a1,

This matrix is called the asymptotic variance matrix of [4¢, 44] or sim-

ply of é and A. Also the covariance matrix in the limit distribution of
{dec,} and {4A,,} is denoted by E.(dc)(4A) and is called the asymptotic
covariance matrix of 4dc and 4A. This kind of notation will generally
be used for other quantities similar to 4c and 4A.

As we have the relation Ex;w(m)x,w(l)=dEx;(n—m)x(n—1) we can
see that the asymptotic variance matrix of [dc, 4A] is equal to SR~
Now if we define da,;,=N"*&,,—a,,) the following relation holds:

Aa,mzé1 cghz,,,,.ﬁg1 de@p+4A; ., .
Thus we get for m=0,1, .-+, M

10,3 dea; % B)n-i+ 3] dAsbas
where {b,} is given by the relation

lﬁ.:_:,]bm‘:(l——éclz‘)_l for |2|=1

and
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CRDNES S

This representation allows us to evaluate the asymptotic variability of
{@,n} from that of {é, 4,,}.

2. TLS estimate

Here we start from the relation
K M
Yo(n)= E P amYs(n—m)+w(n),

where y,(w,)::z:j(n)—é1 cx(n—1). If the exact values of {c¢,} were given

we would apply the method of ordinary least squares to {y;(n); 7=0,
-+, K} to get an estimate of {a,,}, which is an efficient estimate or a
minimum variance unbiased linear estimate ([5], p. 87). As a natural
substitute of this approach we use the SLS estimate {¢,} in place of {c.}
and get the TLS (two stage least squares) estimate {a;n} of {a;,} as

N
the values of {a,,} which minimizes the sum of squares ) {g‘/.,(n)—
n=1

K M

2 L
5 S aiyn—m)], where ,(n)=z,(m)— 3 4, (n—.

From the result of the preceding paragraph it can be shown that
de=R;;regw,

where dc denotes the vector [4ey, - -+, dc,]' and R, denotes the variance
matrix of [raxy(n—1), ro(n—2), - - -, ray(n—L)], where rz(n—1) is the re-
sidual of «W(n—I0) after the deletion of the projection of x(n—I) on
{z,(m—m); j=1,2,---, K, m=0,1, ---, M+ L}, and reaw=[rzaw(), ---,

reyw(L)), where rayw(l)=N"1" {V; re(n—lw(n). Thus we get

E.(dc)(dey =R;L .

It also should be noted that rxy,=7u holds, where ru is the vector of
the corresponding residuals of u(n—I)s after the deletion of their pro-
jection on {x,(n—m)}.
Now we get the relation
do=R;'yw—R;'R, dc,
where da denotes the vector [ddy, - -+, ddxy] of TLS estimate and yw=
N
[yw(0), - - -, yxw(M)]', where yw(m)=N-"*3y,(n—m)w(n), and R,, is
n=1

the covariance matrix E[y(n), - - -, ye(n—M)]' [u(n—1), - - -, w(n—L)] and
R, is the variance matrix of [y(n), -+ -, yx(n—M)]. By taking into ac-
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count the relation Erz(n—Il)y;(n—m)=0 we can see that E(rxw)(y,w)
=0 holds and thus E.(dc)(y;w) =0. Using this relation we can get the
equalities

E.(da)(4c) =—R;'R,, R}

E.(4a)(da) =d(R,;'+R;'R, .R;; R, R;") ,
where R, ,=FE[u(n—1), ---, w(n—L)Y [yy(n), : - -, y(n—M)]. A consistent
estimate s* of ¢* is given by

#=— 3 lim—3 >

j=

1 P 2
N oaj,,.y,('n——m)} .
3. ALS estimate
At this point it would be natural to proceed one step further and
- get a new estimate {6} of {c¢,} as {7} which minimizes n%l {ﬁ(n)——
Lé?‘,'&(n—l)}z, where 1?&('n)=x.,('n)—m§=o Gne(m—m) and {@;,} is the TLS
estimate of {a,,}. We get

de=R;'uw—R;'R, ,da ,
where R, is the variance matrix E[u(n—1), -, u(n—L)]'[u(n—1), - -,
w(n—L)] and uw is the vector of uw(l)=N “”éu(n—l)w(l) (=12, ---,L)

and, as will be shown in Appendix I, we have
E.(4¢)(d¢) =R;'(R.+ R, ,R;'R, .+ R.,R;'R, R;; R, ,R;'R, )R, .

It can be shown that E.(dc)(de) —E..(dc)(dc) is non-negative definite
and thus any linear combination of the components of 4;c does not have
greater asymptotic variance than the corresponding linear combination
of the components of 4e.

We can further continue the process indefinitely, obtaining a new
estimate of {a;,} or {c,} alternatively by utilizing the last estimate of the
other set of parameters. It can be shown (c.f. Appendix I) that this
process gives a sequence of estimates of which asymptotic variance ma-
trices of da and d¢, which we shall denote by V[da] and V{dc] respec-
tively, must satisfy the relation

Vde]=R;'[R,+ R, ,VI[4alR, . JR:"
V(da]=R;'(R,+R,.V[4c]R, IR;
and we have
Vida]=(R,—Rp.,)",
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Vide]=(R.,—Rp,.)™

where pu and py denote the vectors of the projections of (u(n—1), ---,
u(n_L)) and (yl(n)? ) yK(n_M)) on {xj(n_m); j=17 2) Tt K, m=0;
1,.---,M}. It can further be shown that the asymptotic covariance
matrix of da and dc is given by E.(dc)(da) =—R;'R,  E.(da)(da). Thus
the limit of the asymptotic variance matrix of [dc, da] when the stage
proceeds indefinitely is given by

. [de]le) ()] (B By

V% v

Our final estimates are given as the limits of these estimates and
they are the sets of values of {«,,} and {7,} which minimize the sum of

N L K M L 2
squares nZ_JI {xo(n)—‘g 7’la;o(n—l)-—j§l mZ_]o oz,,,,(a:,(n—m)—g1 Tm,(n—-m—l))} .
We shall call these estimates the ALS (absolute least squares) estimates.
A consistent estimate of ¢* is obtained in the same way as in the case
of TLS estimates.

In the simple case where the disturbance {u(n)} is independent of
the input {z,(n)} the relation R,,=O (zero matrix) holds and thus the
asymptotic variance matrices do not decrease after the TLS estimate.
This case was discussed by J. Durbin [2]. As R,,=0 holds in this case
we have

da=~R;'yw

and this shows that our estimate {a,.} is asymptotically equivalent to
the one obtained by applying the ordinary method of least squares to

the model y,(n) =12K‘, f} a;nY;(m—m)+w(n) after the linear transformation
=1 m=¢

by {c} to make the least squares estimate the minimum variance un-
biased linear estimate ([5], p. 87). It is interesting to note that our
effort to get a consistent estimate when the feedback exists has led us
asymptotically to this efficient estimate in the case without feedback.

It also should be noted that our general result of the limit of the
asymptotic variance matrix can be obtained by formally applying the
asymptotic variance formula of ordinary maximum likelihood estimate
for independent observations assuming {w(n)} to be Gaussian.

By using a Schwartz type inequality for matrices ([5], p. 88) we
can show (c.f. Appendix II) that the asymptotic variance matrix of the
SLS estimates of {¢,a;,} is greater than or equal to that of the ALS
estimate. By definition, a matrix A is greater than a matrix B if A—B
is positive definite. It can further be shown that when {u(n)} is white
and independent of the input {z,(n); j=1,2, ---, K} and the {z,(n)}s
are mutually independent or K=1 the SLS estimate has one and the
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same asymptotic variance matrix as the ALS estimate for any value of
L chosen for computation.

From the foregoing discussions it has become clear that:

a) SLS, TLS, ALS estimates are definitely superior to OLS in the case
with feedback,
b) TLS estimate is asymptotically more efficient than OLS in the case

without feedback and with non-white {u(n)}.

It should be mentioned that if some of a;,s are assumed to be
vanishing in the original model we have only to disregard the corres-
ponding terms in the foregoing discussion.

When the true values of L and M are unknown we have to adopt
some guessed values of them for computation. Under our present as-
sumption, if only the guessed values are not smaller than the corre-
sponding true values, we can always get consistent estimates. In the
simple case where the feedback is absent the guess of L does not affect
the consistency but affects the efficiency of the estimate of {a;,}. For
the feedback case we have to expect bias when a too small value is
selected for L. Generally, taking these values too large merely contrib-
utes to increase the sampling variability of the estimates.

5. A practical estimation procedure

The following procedure would be the most useful for practical ap-
plications :

1. Compute the OLS estimate of {a;.}.

2. Compute the SLS estimate of {a;,}, {c¢;} and 4.

3. If the difference between the two estimates of {a,,} is not quite
significant and the estimate of {c,} is very nearly equal to the zero
vector, adopt the OLS estimate of {a;,} as the final estimate of
{ajm}'

4. If the difference between the two estimates of {a,.} is not quite
significant but the estimate of {¢;} is far from the zero vector com-
pute the TLS estimate of {a,.} and adopt it as the final estimate.

5. If the difference between the former two estimates of {a,,} is quite
significant, compute TLS or further ALS estimates of {a,,} and {c}
and adopt it as the final estimates. In this case value of L for
computation should carefully be checked.

In case the economy of computation matters very much, the SLS
(simplified least squares) estimate will in many cases be the most prac-
tical one.

In some applications, the result of estimation of {a;,} may be quite
poor due to very low S/N ratio at some frequency band. In this case
it would be necessary to analyze the sampling variability of the Fourier
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transform of {a;,} and suppress the contribution of the unreliable fre-
quency band.

6. Numerical examples
Monte Carlo experiments were performed of the following model :
2o(n)=0.12x,(n)+0.20x,(n—1)+0.052,(n — 2) +u(n)
w(n)=0.9u(n—1)+w(n)
2:(m)=0.7Tz,(n—1)+wy(n)

where {w(n)} and {w,(n)} are sequences of uniformely distributed ran-
dom numbers with Ew(n)=FEw,(n)=0 and Ew%n)=(0.1)* and Ewi(n)=
(0.5)%. In this case there is no feedback from xi(n) to x,n) and we have
selected as our values of L and M for computation L=6, M=5, respec-
tively, and N was 496. Some statistics based on the results of ten re-
petitions of the experiment are illustrated in Table 1.

5
Table 1. Sample means of % Y (dim—aim)? in ten repetitions.

m=0
OLS SLS TLS
2.170x 10 0.845x 10~ 0.863x 10

Corresponding results are given in Table 2 for the case with
2y(n)=0.12x,(n) +0.20x,(n—1)+0.052,(n — 2) + u(n)
u(n)=0.910u(n—1)—0.181u(n —2)+0.092u(n —3) + 0.053u(n —4)

+0.035u(n—5)—0.108u(n—6) +w(n)
2,(n)=0.6052,(n—1)—0.113x,(n—2)+0.1652,(7 — 3) — 0.091x,(n — 4)
+0.095x,(n—5)—0.006x;(n—6)+wy(n) ,
where the random numbers used in the former case are used in this

case too but with modified scales Ew’(n)=(0.175)* and Ewi(n)=(0.5).
The values L=6, M=5 were used for computation and N was 491.

5
Table 2. Sample means of % Y. (8im—aim)? in ten repetitions.
m=0

OLS SLS TLS
5.259 x 104 2.772x 10~ 3.042x 10

The results clearly show that SLS estimate is superior to OLS esti-
mate in efficiency in these non-white residual cases.
In spite of the additive amount of computations of TLS estimates
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they are not better than SLS estimates in these examples.
To show the definite drawback of OLS estimate in the case with
feedback, experiments were performed on a model

() =0.122,(n — 1) +0.202,(n—2) +0.051,(n — 3) +uy(1)
Ue(1) =0.9u(n— 1) +wy(n)

xy(n)= —0.1ay(n—1)—0.12((n—2) — 0.1x(n—3) +uy(m)
uy(n)=0.Tu,(n—1)+w(n)

where {wy(n)} and {wy(n)} are white noises of independently and uni-
formly distributed random variables with Ewy(n)=Ew,(n)=0 and Ewi(n)=
EwX(n)=(0.5)*. The coefficients a; (j=1,0) were assumed to be vanish-
ing and L and M for the computation were put equal to their true
values L=1 and M=3 for both equations and N was 499. The result
is shown in Tables 3 and 4. The definite superiority of SLS and TLS
estimates over the OLS estimate can clearly be seen. This example is
analogous to the one discussed in a former paper [31.

Table 3. Sample means of 4im in ten repetitions.

m OLS SLS TLg  true value

of aim
1 —0.228 0.127 0.128 0.12
2 0.157 0.209 0.206 0.10
3 —0.115 0.041 0.036 0.05

Table 4. Sample means of dom in ten repetitions.

true value
7 OLS SLS TLS of aom
1 0.030 —0.077 —0.081 —0.1
2 —0.103 —0.080 —0.084 —-0.1
3 —0.198 —0.144 —0.149 —-0.1

7. Comments on the estimation of frequency response functions

By taking the numerical Fourier transform of an estimate of {a;n}
obtained by the present identification procedure we can get an estimate
of the frequency response function. If the estimate of {a;,} is efficient,
its Fourier transform also has the efficiency. Thus if the selection of
the values of L and M is properly performed, a better result can gener-
ally be expected by this approach than by the conventional cross-spectral
approach. Especially, when there exists a feedback from the output to
the input the conventional cross-spectral method cannot give a consistent
estimate [3].

These two aspects of consistency and efficiency in feedback case and



238 HIROTUGU AKAIKE

non-feedback case, respectively, strongly suggest the superiority of this
new approach to the conventional cross-spectral approach. The only
possible practical difficulty of this approach might lie in the necessary
computational complexity when K X M becomes very large.

Asymptotic confidence band for the estimate could be obtained from
the results obtained in the former sections under appropriate assumptions.

It is very important to note the difference of the estimate of a fre-
quency response function and that of the corresponding impulse response
function with respect to the sampling variabilities. If there is a local
frequency band where the estimate of the frequency response function
shows a significant sampling fluctuation, the whole estimate of the im-
pulse response function can be blurred by the error of this frequency
band. The frequency components in the band with poor S/N ratio are
sometimes to be suppressed to give a practically more useful estimate
of the impulse response function with a small sacrifice of unbiasedness.
This shows the necessity of observing the sampling variability of the
estimate in the frequency domain.

8. Conclusion

The results obtained in this paper clarify the fact that the predic-
tive representation of the disturbance process is playing a fundamental
role in the identification problem and is forming a physical basis of the
existence and use of white disturbance representation of the system.

The procedure described in this paper will be at present the most
practical one to assure the consistency and efficiency of the estimates in
the general situation of identification of noisy linear systems.

The numerical results suggest that the statistical characteristics of
SLS estimates would be worthy of further analysis and evaluation.

Appendix |

The proof of the monotone non-increasing property of the asympto-
tic variance matrices of the successive estimates given in section 4, un-
der the heading of ALS estimate, is given as follows.

We denote by {»é,,} the estimate of {a;,} which is obtained by re-
placing {é,} by {.6,} in the defining formula of {d,,}. We also denote
by {6} the estimate of {c,} which is obtained by replacing {a,.} by
{:6,n} in the defining formula of {:¢,}. We shall prove that the asymp-
totic variance matrices of {6} and {.4,,} are not greater than those
of {;6,} and {d,.}, respectively. The proof is such that it can be ex-
tended indefinitely to further stages and thus gives the complete proof
of the asserted non-increasing property. From the definition we have
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de~ R;,‘arxow
da=R;'(yw—R,  4c)
de=R;'(uw—R, ,da)
da=R,; (yw—R, 4C)
de=~R;(uw—R, ,40) ,

where 4 denotes N'? times the difference of the estimate from the true
value. We have already shown, in the discussion of TLS estimate, that

E_ de(yw) =0 (zero matrix).
It can also be shown that

E. de(uw)' = R;} Eo(raw) (uw)’
=R Rz -

As was mentioned in the discussion of TLS estimate rx,=ru holds and
accordingly R, .=R..,n=ZR,,. Thus we get the relation

E dc(uw) =71,

where I denotes the identity matrix of respective dimension. From this
we can show that

E_ da(uw) =0
“and from the former relation E.de(yw) =0
E. da(yw) =dI.

It is clear that we can extend the reasoning successively and use the
result to get the relation

E.(da)(da) =R; (@R, + R, ,E.(dc)(dc)'R, )R,
E.(4,0)(40) =R;'(’R,+ B, .E(4i0) (4:0)' R, )R}
E.(4c)(4e) =R;' (@R, + R, ,En(da)(da)' R, )R,
E.(4i)(dic) =R (R, + R, ,E(40a)(da)R, )R .
Thus, if we can show that FE.(dx)(dic) <E.(dc)(de), where < means

that the right-hand side member is greater than or equal to the left-
hand side member, we can see that E.(4a)(4a)<E.(da)(da) and ac-
cordingly E.(4i¢)(dsc) < E.(4dic)(dic)’. The reasoning can be extended
indefinitely and the only thing we have to prove is the relation E.(Z:c)-

(dic) < E.(de) (de)’ .



240 HIROTUGU AKAIKE

From the above relation we have

Ew(Agc) (Agc)' =R;l(0.2Ru+02Ru’ vR;lRy,u
+ R, ,R;'R, E.(4c)(4c) R, ,R;'R, )R:" ,

and from the former result
E.(dc)(de) =d'R;; =Ry} .
Thus we have only to show that
R.RIR.2R,+R,,R;'R,.+R, R;'R, R:R, R;'R,,, .
For this purpose we apply the general matrix identity
(I—=8)"'=I+S+S(I—-S)'S

to S=(VR,)'R,(VR,)", where R,=R,—R,, and ¥R, denotes the
positive definite square root matrix of R,, and we get

R.R;R,=R,+ R, +R,R;R,, .

Taking into account of the fact that R, is the variance matrix of the
projections of w(n—1), w(n—2), ---, w(n—L) on {z,(n—m); j=1,2, .-, K,
m=0,1, ---, M4+ L} and that R, R;'R,, is the variance matrix of the
projections of u(n—1), w(n—2), ---,u(n—L) on {y,(m—m); j=1,2, .-,
K, m=0,1, .-, M} we can see that R,>=R, R,;'R,, and accordingly
R.R.R.zR,+R, R,;'R,.,+R, ,R,'R, ,R;'R, ,R;'R, .. This completes the
proof.

Appendix Il

Her we will show that the asymptotic variance matrix of the ALS
estimate is not greater than that of the TLS estimate.

In the discussion of the SLS estimate we noticed the following re-
lation :

da,~ g de(@y * D)1+ 33 AA5bn s -

From this the asymptotic variance matrix of the TLS estimate is ob-
tained as follows:

B[]0 @) - pppop,

where B is the matrix of the linear transformation which transforms
[dey, - -, dey, 44y, - -+, dAgpir, oy dAgg, -+, AAKM+L]’ into [Acu <o, deg,
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dby,- -+, dbys, -+, dbgy,+ -+, dbgu]’ Where Ab,,,,:é deya, *b),,,_,+§:) dAub, s

and R is the variance matrix of {zy(n—1), ---, &(n—L), 2,(n), - - -, x,(n—
M—L), -+, 2x(n), -+, xx(n—M—L)}. The asymptotic variance matrix
of the ALS estimate was given as ¢’R.},where R, , denotes the variance
matrix of {u(n—l)v Tty u(n_L)9 yl(n)’ Tt yl(n_M)v Tty yx(n)v Tt '!Ix(’n_
M)}. Obviously we have the relation

R.,=CRC ,

where C is the transformation matrix which gives [u(n—1), - -+, u(n—L),
wm), -, yp(m—M), -+, yx(n), -+ -, yx(n—M)]" from [z(n—1), ---, 2(n—
L), -+, z(n), -, x(n—M—L), -+, 2g(n), -+, xx(n—M—L)]'. It is stated
in the book of Grenander and Rosenblatt ([56], p. 88) that for any two
nXs matrices I* and ¢, where * denotes the conjugate matrix, we have

¥ 2 (Ig)*U*)7'g) -

By putting !=CvR and ¢=(vR)™'B’, where ¥R is the unique positive
definite square root of R, we get

BR'B'z(CB')(CRC")"{(CB') .

By using the relation (li b,z’) (1_¢é c,z‘>=1 we can show that CB'=1
=0 =1
(identity matrix) and thus we have
BR'B'=(CRC")™.

This completes the proof.
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