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The cumulants of random variables are important in deriving, for
statistics of interest, exact sampling distributions, approximate sampling
distributions (as via Cornish-Fisher expansions) and asymptotic sampling
distributions (such as asymptotic normality). This note presents a means
of calculating cumulants when two or more stages of sampling may be
recognized.

Given the k-variate random variable (x,, -- -, x,), let A denote an
event in the associated probability field. The following properties of
first and second order cumulants are well known (see Hansen, Hurwitz
and Madow ([4], pp. 61-66) or Feller ([3], p. 164)).

(1) Ev,=E{E(z.|A)}

(2) var xi=§'{var (x| 4)} +vi.r {E(x;| A)}

(3) cov (;, x,)=§'{cov (2, ;] A)} +c<iv{E(xi |A), E(x;| A)}

for 4,5=1, ...,k where |A) indicates that calculations are carried out

conditionally on the event A, while the subscript A indicates that calcu-
lations are carried out over the various values of A. Let (z,, ---, 2z)
denote the joint kth order cumulant of (x,,---,x,) and for integers
Buy ey B let myp (4, -+, ) =K(a,[B; times], - - -, 2,[B, times]). In this
note we generalize (1), (2), (3) to

(4) x(xl) Sty xk)=;f{x(xallA)r ] 'C(xwplA)} .

The summation in (4) extends over all partitions a=(ay, ---, a,),
p=1, ...,k of the integers (1,-...,k) and Loy =(2y,, -+ -, 2,) if a;=(4y,
«++, 75). We may prove,

THEOREM. Given the k-variate random variable (x,, ---,x.) with
Elz[f<co, 1=1, -+, k, the identity (4) s valid.

ProOF. k(wy, ---, %) is the coefficient of ¢, --- ¢, in the Taylor series
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expansion of log E(exp 3 ;) about the origin. (This expansion may
[3

be carried out because of the assumed finiteness of moments.) However

(5)  log E(exp X xit,)=log 1}’ {E(exp 3 z:t;| A)}

=log B{exp (S, ors -+ 2 )41 oy

ﬁ 1
where |[t|*=ti+ --- +¢ and the summation extends over integers B,
085k, 1=1, -- -, k, with 0<>B;<k. We note that the expression on

the right-hand side of (5) is essentially the cumulant generating function
of the random variables Ko (@, -+, 2| A). The stated result now
follows on identification of the coefficient of ¢, --- ¢, .

COROLLARY. The kth order cumulant r(x) of a univariate random
variable x, with E|x|*<oco, 1is given by

k! 1

( 6) 2 ﬂ1!#2! .. (p;!)"l(pz!)”’ .. fl‘u‘z"'{’cm(xlA)a ,sz(xlA)! * '}
where the summation extends over all partitions (pi1, pi, ---) of k with
vttt - - - =k.

This corollary follows from the theorem on taking z,=x, i=1, - - -, k,

and counting the identical terms.
We now turn to several examples of the theorem and corollary.

Example 1. Mixtures. Suppose that the probability measure of

(@, -+ -, ) is in fact a mixture, that is its c.d.f. F(z,, ---, x,) is of the
form
(7) F(a, -, x,,):SG(xl, cen, 3y 0)AUO)

where, for fixed 8, G(x,, - -+, z,; 0) is a c.d.f. and U(9) is a probability
measure in #. The theorem allows us to express the kth order joint
cumulant of (x;, ---,2;) in terms of the cumulants calculated from
G(z,, -+, x,; §) for fixed 6. The required expression is given by 4)
taking A to refer to 4.

This result is given for the first and second order cases in Feller
([3], p. 164).

The next example refers to the sum of a random number of random
variables.

Example 2. Cumulants of random sums. Let =z, u,--- be a
sequence of independent, identically distributed random variables with
k(x)=kK;, j=1, ---, k existing, and n an integer valued random variable
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distributed independently of the sequence, whose moments exist up to
order k. Let S,=x,+ --- +«,. From (1) and (2) above, letting A refer
to n, we see ES,=(Ex)(En) and var S,=(En)var z+var n(Ez)’. In
general we have from the corollary, taking A to refer to =,

— k! 1
(%) a(8) =3 plm! oo (@) (pl)2 - - f‘"‘”z"'{nxpl’ Mhp, s }
= k! 1 29 e e e
=2 F‘dﬂzl tee (pll)yl(pzl)”" ot ’E;{’Cpg /C,;1+p2+-.-(’n) ’
the summation extending over all partitions (pi1, pi2, ---) of k with

P+ oo+ - =k.

The expression (8) may be used to derive a central limit theorem
for a random number of random variables. Suppose all moments of x
and » exist with x(x)=0. Suppose the distribution of n depends on a
parameter N with limg(n)=oco. Consider the standardized variate

N—oo

Z.=8,/(var S,)"?. We see that EZ,=0, varZ,=1 and k(Z,)=x«(S,)/
(En-var x)*2. By inspection we see that if k,(n)/(E(n))**—0 as N— oo
for k=3,4, ---, then k(Z,) >0 as N— oo for k=3,4, ---. We see that
Z, is asymptotically standardized normal. Central limit theorems for
random sums are considered in Robbins [5] and Wittenberg [7].

Robbins also considers an alternate form of standardization of S,,
namely Y,=(S,—ES,)/n"*. Here we see from (1) and (2) that EY,=0
and var Y,=varxz. From the corollary we have for £>2,

k! 1
mlig! - @@l)2- -
XK (R gD L

(9) £l Ya) =3

Y e R
Ky Ko,

iy

the summation extending over all partitions (pi1, pj2, ---) of k with
P+ o+ -+ =k and p,, ps, -+ - >1.

Example 3. Two-stage sampling. Consider a sampling plan involv-
ing the selection of = first-stage units with or without replacement and
with possibly unequal probabilities, followed by a second stage of sampl-
ing, carried out independently within the selected first-stage units, fol-
lowed by the measurement of the k-variate random variable x(j)=
@(7), - -+, x(4)) in the jth unit. Define indicator variables as follows;
a;=1 if the jth unit is in the sample and a;=0 otherwise. Consider
sample totals. We see that these have the form Xi=2!]a,x¢(j), 1=1,
-+, k where (a,,a,, ---) is independent of the (x(7), - - -, #(7)), 7=1,2,

., which are independent of each other.

Letting A refer to the variate (a,, a,, ---) and X=(X,, -+, X;), we
have from the theorem
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(10) #(X) =3k (6(X,,|4), -+, 6(X,[A)},

the summation extending over all partitions a=(ay, - -+, a;), =1, -,k
of the integers (1, ---, k).

Since the (z(j), - -, 2(4)), j=1,2, --- are independent and a}=a,,
m:l’ 2, e

(11) ’C(Xﬂ|A)=;saj’f(%; J)
where &(x;; 5)=r(x:(3), - -+, 2:,(5)) if B=(i1, -+, 7). We have therefore
12) K(X)=3% DIRE Zj‘.lc(xal; J) e K@y GoK(@G, -0y ay,) -

« N b4

We note that the cumulants of the variate (a,, a;, ---) are needed and
that these depend solely on the form of sampling employed in the selec-
tion of the first-stage units. We see that in order to obtain an unbiased
estimate of x(X), we require unbiased estimates of the products of the
cumulants of the xz(j). If the first-stage units are infinite in size and
one employs simple random sampling within them, these estimates have
been provided in Dressel [1] and Tukey [6].

After this note had been prepared, the author learned that D. S.
Robson of Cornell University had previously obtained the result con-
tained in the corollary. Ebner [2] employed it in an investigation of
the balanced one-way nested classification and work has continued at
Cornell on its use in sampling from finite populations.
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