REMARKS ON FINITE INVARIANT MEASURES FOR ONE-PARAMETER GROUP OF MEASURABLE TRANSFORMATIONS

YOSHIHIRO KUBOKAWA

(Received Sept. 12, 1968; revised Nov. 8, 1968)

1. Introduction

Let (Ω, B, m) be a probability measure space and (T_t) be a measurable non-singular one-parameter group (defined below) of bi-measurable transformations of Ω onto itself. What is a necessary and sufficient condition for the existence of a finite (T_t) -invariant measure μ which is equivalent to m? The purpose of this paper is to show that some necessary and sufficient conditions for the existence of finite invariant measures for a one-parameter group reduce to those for a measurable transformation (Theorem 2) and measurability of a one-parameter group means its continuity in a sense (Theorem 1).

2. Definitions and remarks on them

Let (Ω, B, m) be a σ -finite measure space, i.e., Ω be an abstract space, B be a σ -algebra of subsets of Ω and m be a σ -finite measure on B. Let (Ω, B, μ) be another σ -finite measure space. The measure μ is said to be equivalent to m (notation; $\mu \sim m$) if μ is absolutely continuous with respect to m (notation; $\mu \ll m$) and conversely m is absolutely continuous with respect to μ .

A bi-measurable transformation T of a σ -finite measure space (Ω, B, m) onto itself is said to be non-singular if $m(T^{-1}E)=m(TE)=0$ for any measurable set E with m(E)=0. Let (T_t) $(-\infty < t < \infty)$ be a one-parameter group of bi-measurable transformations of the measure space (Ω, B, m) onto itself, i.e., for each t, T_t be a bi-measurable transformation of Ω onto itself and $T_{t+s}\omega=T_t\circ T_s\omega$ $(-\infty < t, s < \infty, \omega \in \Omega)$. (T_t) is said to be measurable if $f(T_t\omega)$ is a $L\times B$ -measurable function for any B-measurable function f on Ω . (L is the σ -algebra of Lebesgue measurable sets of the real line). (T_t) is said to be non-singular (with respect to m) if we have $m(T_tE)=0$ for all t from m(E)=0. (T_t) is said to be a σ -finite flow on (Ω, B, m) if m is (T_t) -invariant and (Ω, B, m) is σ -finite. In particular, if $m(\Omega)=1$, (T_t) is said to be a flow on (Ω, B, m) .

We can now state our problem. Let (T_t) be a measurable oneparameter group of bi-measurable transformations of a σ -finite measure space (Ω, B, m) onto itself. What is a necessary and sufficient condition for the existence of a finite (T_t) -invariant measure μ with $\mu \gg m$? As we can find a probability measure space (Ω, B, μ) with $\mu \sim m$, we may and do assume that (Ω, B, m) is a probability measure space. If there exists a finite invariant measure μ with $\mu \gg m$, $m(T_t E)$ is a continuous function of t for each measurable set E (Theorem 1). Let \tilde{m} be a measure defined by

$$\tilde{m}(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} m(T_{\alpha(n)}E) ,$$

where a set $\{\alpha(n)\}\ (n=1, 2, \cdots)$ is a countable dense set of the real line. It is easy to verify the following:

$$\mu \gg \tilde{m} \gg m$$
,

 (T_t) is non-singular with respect to \tilde{m} .

From this we may and do assume that (T_t) is non-singular with respect to m. If there exists a finite invariant measure μ with $\mu\gg m$, there exists a finite invariant measure $\tilde{\mu}$ with $\tilde{\mu}\sim m$. This is shown as follows. By Radon-Nikodym's theorem, there exists a non-negative measurable function f such that

$$m(E) = \int_{E} f(\omega) d\mu(\omega)$$
 $(E \in B)$.

Put $A = \{\omega; f(\omega) > 0\}$. We have $\mu(T_t A \Delta A) = 0$, where $A \Delta B = A \cup B - A \cap B$. We define a new measure $\tilde{\mu}$ by

$$\tilde{\mu}(E) = \mu(E \cap A)$$
.

It is easy to verify that $\tilde{\mu} \sim m$ and $\tilde{\mu}$ is (T_t) -invariant. The above consideration (which is found in [1] in a discrete parameter case) shows that it is natural to formulate the problem of invariant measures in the following way: Let (Ω, B, m) be a probability measure space and (T_t) be a measurable non-singular one-parameter group of bi-measurable transformations of Ω onto itself. What is a necessary and sufficient condition for the existence of a finite (T_t) -invariant measure μ with $\mu \sim m$?

3. Measurability and continuity

THEOREM 1. Let (Ω, B, m) be a probability measure space and (T_i) be a measurable one-parameter group of bi-measurable transformations of (Ω, B, m) onto itself. If there exists a σ -finite (T_i) -invariant measure μ

on (Ω, B) with $\mu \gg m$, then the following two continuity conditions hold.

- (1) For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $|t t'| < \delta$, $|m(T_t E) m(T_t E)| < \varepsilon$ for any $E \in B$.
 - (2) For any set $E \in B$ and any t, we have

$$\lim_{h\to 0} m(T_{t+h}E\Delta T_t E) = 0.$$

COROLLARY. If (T_t) is a measurable flow on (Ω, B, m) , it is continuous, i.e.,

$$\lim_{t\to 0} m(T_t E \Delta E) = 0.$$

We need two lemmas to prove the theorem.

LEMMA 1. Let f(t) be a real-valued function on the real line such that $|f|^p$ is Lebesgue-integrable for some p $(1 \le p < \infty)$ on any finite interval [a, b). Then for any finite interval [a, b) we have

$$\lim_{h\to 0} \int_a^b |f(t+h)-f(t)|^p dt = 0.$$

The lemma is well-known and therefore its proof is omitted.

LEMMA 2. Let (T_t) be a σ -finite flow on (Ω, B, μ) and $f(\omega)$ be a real-valued function on Ω such that $|f|^p$ is integrable for some p $(1 \le p < \infty)$. Then we have

$$\lim_{h\to 0}\int |f(T_{\iota+h}\omega)-f(T_{\iota}\omega)|^p d\mu(\omega)=0.$$

Remark. When Ω is separable or $f(T_t\omega)$ is separately-valued, this lemma is proved in [5] or [6] respectively.

PROOF. We have

$$\int \int_a^b |f(T_t\omega)|^p dt d\mu = \int_a^b \int |f(T_t\omega)|^p d\mu dt = (b-a) \int |f|^p d\mu < \infty.$$

From this

$$\int_a^b |f(T_t\omega)|^p dt < \infty \text{ (a.e. } \mu).$$

By Lebesgue's convergence theorem and Lemma 1, we have,

$$egin{aligned} &\lim_{h o 0} \int_a^b |f(T_{t+h}\omega) - f(T_t\omega)|^p dt d\mu \ &= \int \lim_{h o 0} \int_a^b |f(T_{t+h}\omega) - f(T_t\omega)|^p dt d\mu = 0 \ . \end{aligned}$$

Noting that μ is an invariant measure, we have

$$\lim_{h\to 0}\int |f(T_{t+h}\omega)-f(T_t\omega)|^p d\mu=0.$$

PROOF OF THE THEOREM 1. As $m \ll \mu$, by Radon-Nikodym's theorem, there exists a non-negative measurable function $f(\omega)$ such that

$$m(E) = \int_{E} f(\omega) d\mu(\omega)$$
 $(E \in B)$.

As μ is (T_t) -invariant we have,

$$|m(T_{t+h}E)-m(T_tE)| \leq \int |f(T_{t+h}\omega)-f(T_t\omega)|d\mu(\omega).$$

By Lemma 2 (p=1), we have

$$\lim_{t\to 0} |m(T_{t+h}E)-m(T_tE)|=0.$$

It is obvious that convergence is uniform with respect to t and E. We have proved the first continuity condition. We first prove (2) for any measurable set E with $\mu(E) < \infty$. We have

$$m(T_{t+h}E\Delta T_tE) = \int |\chi_E(T_{t+h}^{-1}\omega) - \chi_E(T_t^{-1}\omega)|f(\omega)d\mu(\omega)|.$$

Let ε be an arbitrary positive number. We can find a function $g(\omega)$ such that

$$\int |g(\omega)|^2 d\mu(\omega) < \infty \quad \text{and} \quad \int |g(\omega) - f(\omega)| d\mu(\omega) < \varepsilon.$$

We have

$$m(T_{t+h}E\Delta T_tE) \leq \left(\int |\chi_E(T_h\omega) - \chi_E(\omega)|^2 d\mu\right)^{1/2} \cdot \left(\int |g|^2 d\mu\right)^{1/2} + 2\int |g-f| d\mu.$$

By Lemma 2 (p=2) we have

$$\lim_{t\to 0} \sup m(T_{t+h}E\Delta T_t E) \leq 2\varepsilon.$$

Hence, as ε is arbitrary, we have the conclusion. We prove the general case. Let ε be an arbitrary positive number. There exists an increasing sequence $\{E_n\}$ $(n=1,2,\cdots)$ of sets such that $E=\bigcup_{n=1}^{\infty}E_n$ and $\mu(E_n)<\infty$ $(n=1,2,\cdots)$. Put $F_n=E-E_n$ $(n=1,2,\cdots)$. For any t and any ε , there exists a natural number p such that $m(T_tF_n)<\varepsilon$ $(n\geq p)$.

For this ε , there exists $\delta'>0$ such that $|m(T_{\iota+h}A)-m(T_{\iota}A)|<\varepsilon$ for any h with $|h|<\delta'$ and any set $A\in B$ (Theorem 1, (1)). As $\mu(E_p)<\infty$, there exists $\delta''>0$ such that $m(T_{\iota+h}E_p\Delta T_{\iota}E_p)<\varepsilon$ for any h with $|h|<\delta''$. Put $\delta=\min(\delta',\delta'')$. If $|h|<\delta$, then we have

$$m(T_{t+h}E\Delta T_tE) \leq m(T_{t+h}E_p\Delta T_tE_p) + m(T_{t+h}F_p) + m(T_tF_p) < 4\varepsilon$$
.

Remark. If $\mu(\Omega) < \infty$, then for any $\varepsilon > 0$ and any $E \in B$, there exists $\delta > 0$ such that if $|t-t'| < \delta$, then $m(T_t E \Delta T_t E) < \varepsilon$.

4. Theorem concerning the existence theorem of invariant measures

THEOREM 2. Let (Ω, B, m) be a probability measure space, (T_t) be a measurable non-singular one-parameter group of bi-measurable transformations of Ω onto itself and T be a non-singular bi-measurable transformation of Ω onto itself. Let (C) be a necessary and sufficient condition for the existence of a T-invariant finite measure μ with $\mu \sim m$. Then a necessary and sufficient condition for the existence of a (T_t) -invariant finite measure μ with $\mu \sim m$ is either (1) or (2).

- (1) There exists s ($s \neq 0$) such that T_s satisfies (C).
- (2) For all t, T_t satisfies (C).

PROOF. It is obvious that we need only to prove that (1) is sufficient. Let μ be a T_s -invariant finite measure with $\mu \sim m$. We define a new measure $\tilde{\mu}$ by

$$\tilde{\mu}(E) = \frac{1}{s} \int_0^s \mu(T_t E) dt$$
.

We can readily verify that $\tilde{\mu}$ is (T_t) -invariant and $\tilde{\mu} \sim m$.

COROLLARY. Let (Ω, B, m) , (T_t) and T be the same with those of Theorem 2. Then the following seven conditions are equivalent.

- (1) There exists a finite (T_i) -invariant measure μ with $\mu \sim m$.
- (2) There exists s $(s \neq 0)$ such that a limit $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} m(T_s^k E)$ exists for any measurable set E [2].
- (3) For any real number t and any measurable set E, there exists a limit $\lim_{n\to\infty} \frac{1}{n} \sum_{k=0}^{n-1} m(T_t^k E)$ [2].
- (4) There exists s ($s \neq 0$) such that for any $\varepsilon > 0$, there exists $\delta > 0$ such that if $m(E) < \delta$, $m(T_s^n E) < \varepsilon$ ($n = 0, \pm 1, \pm 2, \cdots$) [3].
- (5) For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $m(E) < \delta$, $m(T_t E) < \varepsilon$ for all t [3].
 - (6) There exists s (s \neq 0) such that if $\sum_{i=1}^{\infty} m(T_s^{n_i}E) < \infty$ for some

sequence of natural numbers $\{n_i\}$ $(n_1 < n_2 < \cdots)$, m(E) = 0.

(7) If m(E) > 0, $\sum_{i=1}^{\infty} m(T_i^{n_i}E) = \infty$ for any t and any sequence of natural numbers $\{n_i\}$ $(n_1 < n_2 < \cdots)$.

The following is of some interest.

(8) If T^k is bounded for some k $(k \neq 0)$, T is bounded, i.e., if T is not bounded, T^k is not bounded for any k $(k \neq 0)$. (T is said to be bounded, if m(A-B)=0 for any two measurable sets A, B such that $A = \bigcup_{n=-\infty}^{\infty} A_n$, $A_n \cap A_m = \phi$ $(n \neq m)$, $B = \bigcup_{n=-\infty}^{\infty} T^n A_n$, $T^n A_n \cap T^m A_m = \phi$ $(n \neq m)$ and $A \supset B$.) [4].

PROOF. These statements are trivial consequences of Theorem 2 and the invariant measure problem for a transformation.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] P. R. Halmos, Lecture on Ergodic Theory, Math. Soc. Japan, 1956.
- [2] Y. N. Dowker, "Finite and σ -finite invariant measures," Ann. Math., 54 (1951), 595-608.
- [3] A. B. Hajian and S. Kakutani, "Weakly wandering sets and invariant measures," Trans. Amer. Math. Soc., 110 (1964), 136-151.
- [4] E. Hopf, "Theory of measure and invariant integrals," Trans. Amer. Math. Soc., 34 (1932), 373-393.
- [5] H. Hopf, Ergodentheorie, Springer, 1937.
- [6] E. Hille, Functional Analysis and Semi-groups, Amer. Math. Soc., 1948.