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1. Introduction

Let (2, B, m) be a probability measure space and (7,) be a measur-
able non-singular one-parameter group (defined below) of bi-measurable
transformations of £ onto itself. What is a necessary and sufficient
condition for the existence of a finite (7)-invariant measure g which is
equivalent to m? The purpose of this paper is to show that some neces-
sary and sufficient conditions for the existence of finite invariant meas-
ures for a one-parameter group reduce to those for a measurable trans-
formation (Theorem 2) and measurability of a one-parameter group
means its continuity in a sense (Theorem 1).

2. Definitions and remarks on them

Let (2, B,m) be a o-finite measure space, i.e., 2 be an abstract
space, B be a og-algebra of subsets of 2 and m be a o-finite measure on
B. Let (2, B, ) be another ¢-finite measure space. The measure p is
said to be equivalent to m (notation; p~m) if p is absolutely continu-
ous with respect to m (notation; g« m) and conversely m is absolutely
continuous with respect to p.

A Dbi-measurable transformation T of a ¢-finite measure space (2, B,
m) onto itself is said to be non-singular if m(T'E)=m(TE)=0 for any
measurable set E with m(E)=0. Let (T,) (—oo<t<) be a one-param-
eter group of bi-measurable transformations of the measure space (2, B,
m) onto itself, i.e., for each ¢, T, be a bi-measurable transformation of
Q onto itself and T,,,w=T,0o Tw (—oo<t, s<0, we). (T, is said to
be measurable if f(T.») is a L X B-measurable function for any B-meas-
urable function f on 2. (L is the gs-algebra of Lebesgue measurable
sets of the real line). (T,) is said to be non-singular (with respect to
m) if we have m(T,E)=0 for all ¢{ from m(E)=0. (T,) is said to be
a o-finite flow on (2, B, m) if m is (T,)-invariant and (2, B, m) is o-finite.
In particular, if m(2)=1, (T,) is said to be a flow on (2, B, m).
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We can now state our problem. Let (T, be a measurable one-
parameter group of bi-measurable transformations of a o-finite measure
space (2, B, m) onto itself. What is a necessary and sufficient condition
for the existence of a finite (7T))-invariant measure p with g>m? As
we can find a probability measure space (2, B, p) with p~m, we may
and do assume that (2, B, m) is a probability measure space. If there
exists a finite invariant measure p with g>m, m(T.E) is a continuous
function of ¢ for each measurable set E (Theorem 1). Let m be a meas-
ure defined by

W(E)=3) —-m(Tuw)

where a set {a(n)} (n=1,2, ---) is a countable dense set of the real line.
It is easy to verify the following:

py>m>m,
(T,) is non-singular with respect to 7.

From this we may and do assume that (7)) is non-singular with respect
to m. If there exists a finite invariant measure p with pg>m, there
exists a finite invariant measure g with gz~m. This is shown as fol-
lows. By Radon-Nikodym’s theorem, there exists a non-negative meas-
urable function f such that

mE)=| fduo) (EeB).

Put A={ov; f(v)>0}. We have p(T,AAA)=0, where AAB=AUB-—
ANB. We define a new measure g by

#E)=wENA4) .

It is easy to verify that g~m and g is (T,)-invariant. The above con-
sideration (which is found in [1] in a discrete parameter case) shows that
it is natural to formulate the problem of invariant measures in the fol-
lowing way: Let (2, B, m) be a probability measure space and (T,) be a
measurable non-singular one-parameter group of bi-measurable transfor-
mations of 2 onto itself. What is a necessary and sufficient condition
for the existence of a finite (T))-invariant measure g with p~m?

3. Measurability and continuity

THEOREM 1. Let (2, B, m) be a probability measure space and (T,
be a measurable one-parameter group of bi-measurable transformations of
(2, B, m) onto itself. If there exists a o-finite (T,)-invariant measure p
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on (2, B) with p»m, then the following two continuity conditions hold.
(1) For amy &>0, there exists 6>0 such that if [t—1t'|<9,
| m(T.E)—m(T,E)|<e for any E € B.
(2) For any set E€ B and any t, we have

lzm m(T,,.EAT.E)=0.
—0

COROLLARY. If (T, is a measurable flow on (2, B, m), it is con-
tinuous, t.e.,

lim m(T,EAE)=0.

t—0

We need two lemmas to prove the theorem.

LEMMA 1. Let f(t) be a real-valued function on the real line such
that | f|P is Lebesque-integrable for some p (1=p<oo) on any finite
interval [a,b). Then for any finite interval [a, b) we have

tim " £¢+0) - £©) Pae=0.

The lemma is well-known and therefore its proof is omitted.

LEMMA 2. Let (T,) be a o-finite flow on (2, B, p2) and f(w) be a real-
valued function on 2 such that | f|P is integrable for some p (1=p< o).
Then we have

tim | [ A(Toss0)— F(T0) Pdps@) =0

Remark. When 2 is separable or f(T.w) is separately-valued, this
lemma is proved in [5] or [6] respectively.

Proor. We have

[ 17T patdu={ {1 (L) Papit=—a) | 1 f <o
From this
S" | f(T.w) Pdt< oo (a.e. p).
By Lebesgue’s convergence theorem and Lemma 1, we have,

tim | "1 £(Tusn0) — F(Teo) Pty

={1im "1 £(Tvsp0)— £(Te0) Patdp=0.
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Noting that g is an invariant measure, we have
lim S | F(Tsur0)— f(T.0) [Pdp=0 .

PROOF OF THE THEOREM 1. As m<p, by Radon-Nikodym'’s theo-
rem, there exists a non-negative measurable function f(w) such that

mE)=| fwiue) (EeB).
As p is (T,)-invariant we have,
| M ToinB) AT | | | F(Tins) = F(Te0) ldpo)
By Lemma 2 (p=1), we have
lgxol | m(T, s E)—m(T.E)|=0.
It is obvious that convergence is uniform with respect to ¢t and E. We

have proved the first continuity condition. We first prove (2) for any
measurable set E with p(E)<oco. We have

(T, EATE) =\ | 1a( T3s0)—1o(Ti"0) | f (@)dpea)

Let ¢ be an arbitrary positive number. We can find a function g(w)
such that

[ 190 Fduto)<oo and | 1g@)— () @) <e

We have
1/2
(T EATE)S (| 12(Tu0) ~12(0) fds)

12
({1orde)"+2]19-F1dp.
By Lemma 2 (p=2) we have
li_ril sup m(T, R EAT,E)<2¢.

Hence, as ¢ is arbitrary, we have the conclusion. We prove the gen-
eral case. Let ¢ be an arbitrary positive number. There exists an in-

creasing sequence {E,} (n=1,2,.-.) of sets such that E= GE,, and
n=1

WB)<oo =12, ---). Put F,=E—E, (n=1,2, ---). For any ¢ and
any ¢, there exists a natural number p such that m(7T.F,)<e (n=p).
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For this ¢, there exists />0 such that |m(T,,4)—m(T.A)|<e for any
h with |h|<é' and any set A € B (Theorem 1, (1)). As pu(E,)<oo, there
exists 8”>0 such that m(T.,,EAT.E,)<e for any h with |h[<d". Put
d=min (¢, 8"). If |h|<d, then we have

M Ty BATE) ST n B AT EL) +m( Ty ) + (T, F ) <4e

Remark. If p(2)<oo, then for any ¢>0 and any E € B, there ex-
ists 6>0 such that if |t—t'|<d, then m(T,EAT,E)<e.

4. Theorem concerning the existence theorem of invariant measures

THEOREM 2. Let (2, B, m) be a probability measure space, (T,) be a
measurable non-singular one-parameter group of bi-measurable transfor-
mations of 2 onto itself and T be a non-singular bi-measurable trans-
formation of 2 onto itself. Let (C) be a mnecessary and sufficient condi-
tion for the existence of a T-invariant finite measure p with p~m. Then
a mecessary and sufficient condition for the existence of a (T)-invariant
finite measure p with p~m is either (1) or (2).

(1) There exists s (s#0) such that T, salisfies ©).

(2) For dll t, T, satisfies (C).

ProoF. It is obvious that we need only to prove that (1) is suf-
ficient. Let g be a T.-invariant finite measure with p~m. We define
a new measure g by

=1 | (TEt.

We can readily verify that g is (T)-invariant and pg~m.

COROLLARY. Let (2, B,m), (T,) and T be the same with those of
Theorem 2. Then the following seven conditions are equivalent.

(1) There exists a finite (T,)-invariant measure p with p~m.

(2) There exists s (s+0) such that a limit lim 153 m(T}E) ea-

n—oco k=0

ists for any measurable set E [2].

(3) For any real number t and any measurable set E, there exists
a limit lim%ni m(TEE) [2].

n—+co k=0

(4) There exists s (s#0) such that for any >0, there exists 6>0
such that if m(E)<3s, m(TrE)<e (n=0, £1, £2, ---) [3].

(5) For any e>0, there exists 6>0 such that if m(E)<J,
m(T.E)<e for all t [3].

(6) There exists s (s#0) such that if ii‘, m(THE)< oo for some
=1
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sequence of natural numbers {n,} (n,<my<---), m(E)=0.

(7)) If m(E)>0, ﬁ}’m(T[‘iE)=oo for any t and any sequence of
natural numbers {n;} (n,<n,<::-).

The following is of some interest.

(8) If T* is bounded for some k (k+0), T is bounded, i.e., if T
is not bounded, T* is not bounded for any k (k+0). (T is said to be
bounded, if m(A—B)=0 for any two measurable sets A, B such that
A= U A,, A,NA,=¢ (n#m), B= U T"4,, T"A,NT A,=¢ (n#m)

n=—oo =—00

and ADB.) [4].

PrOOF. These statements are trivial consequences of Theorem 2 and
the invariant measure problem for a transformation.
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