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1. Introduction

Let T be a one-to-one non-singular bi-measurable transformation of
a probability measure space (2, B, m) onto itself. We consider the ex-
istence of measures which are invariant under the transformation 7" and
equivalent to the measure m. Roughly speaking we show the following
propositions. There exists a finite invariant measure if and only if the
transformation is compact (Theorem 1). There exists a finite invariant
measure if and only if the transformation is almost periodic (Theorem 2).
Theorem 3 is a generalization of Theorem 1 to a o-finite case. There
exists a o-finite invariant measure if and only if the transformation is
g-compact. Theorem 4 is a stronger version of Theorem 3. The notion
“Compact and g-compact of the transformation” is introduced here (De-
finitions 1, 2). The last theorem is a decomposition theorem. The whole
space 2 is divided into two invariant sets such that in one of them we
can construct a o-finite invariant measure and in any part of the other
we cannot construct any o-finite invariant measure which is equivalent
to m and not identically zero (Theorem 5). The proofs are based on.
the existence of Banach limit and so-called induced transformations.

2. Notations, definitions and lemma

Let (2, B, m) be a measure space, i.e., 2 be an abstract space, B
be a o-algebra of subsets of 2 and m be a measure defined on B. We
consider only a o-finite measure space here. Let (2, B, ) and (2, B,v)
be two measure spaces. The measure g and v are said to be equivalent
(notation; g~v), if they are mutually absolutely continuous. If x and
y are equivalent on a measurable set A, then we denote it by p~u(4).
The measure v is said to be uniformly absolutely continuous with respect
to the measure g, if for any >0, there exists >0 such that v(E)<e
for any measurable set E with p(E)<d [3].

A one-to-one transformation of a probability measure space (2, B, m)
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onto itself is said to be bi-measurable if both T and T-! are measurable.
The bi-measurable transformation T is said to be non-singular (with re-
spect to m), if m(TE)=m(T'E)=0 for any measurable set E with
m(E)=0. We call a non-singular bi-measurable transformation of (2,
B, m) onto itself an automorphism on (2, B, m) for brevity. Let T be
an automorphism on (2, B, m). The measure m is said to be (7-)invari-
ant, if m(T'E)=m(TE)=m(E) for any measurable set E. A measur-
able set A is said to be (7-)equivalent to a measurable set B (notation;
A~B), if there exist two countable decompositions {4,} and {B,} (n=
1,2, ---) of A and B respectively and a sequence {i(n)} (n=1,2, ---) of
integers such that T°™A,=B, (n=1,2, ---) (A, can be empty for some
natural number =n.) ([1], [2]).

DEFINITION 1. From now on we fix a probability measure space
(2, B, m) and consider an automorphism 7T on 2. A measurable set A is
said to be (7-)compact, if it satisfies the following: For any ¢>0, there
exists 6>0 such that if m(B)<é and BC A, then m(B’)<e for any meas-
urable set B’ with B'~B and BCA. A measurable set A is said to be
strongly (T-)compact, i‘f it satisfies the following: For any >0, there

exists 6>0 such that if m(B)<dé and BC A, then i m(T*B,)<e for any
i=1
countable decomposition {B;} (1=1,2, ---) of B and any sequence of in-
tegers {n;} (¢:=1,2, ---) with U T™B,CA.
i=1

Remark. Let 2~£2' and denote this equivalence by «, ie., a=
({2.}, {i1(n)}D) n=1,2, ..-). We define a measure m. by

mdE)=3 m(T“(ENR2,)) for any EcB.
n=1

We can show that the whole space 2 is T-compact if and only if {m,}
is weakly sequentially compact.

DEFINITION 2. The automorphism T is said to be (strongly) com-
pact, if the whole space 2 is (strongly) T-compact. A measurable set
A is said to be (strongly) s-compact (with respect to T), if there exists
a countable decomposition {4,} (r=1,2, ---) of A such that every set
A, (n=1,2, --.) is (strongly) T-compact. The automorphism 7T is said
to be (strongly) s-compact, if the whole space 2 is (strongly) o-compact
with respect to T.

Remark. If a measurable set A is compact, then it is bounded in
the sense of Hopf [1]. If a measurable set A is o-compact, then it is
g-bounded in the sense of Halmos [2].

Here we explain so-called induced transformations ([2], [4]). Let A
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be a measurable set contained in the conservative part of 2. We de-
fine an integral-valued function p(w; A) on 2 by

plw; A)=min {n; T"w € A, n>0}- 1 (o),

where we put plw; A)=o0, if weA and {n;T"0€cA,n>0}=¢. Put
A=A— G T w; p(w; A)=o0}. Then m(A’)=m(A) and p(o; A')=p(w; A)

n=-—oo

for any we A’. We define a transformation S of A onto itself by

Treidy if weA’,
Se=
) if vecA—A".

The transformation S is a one-to-one non-singular bi-measurable trans-

formation of A onto itself and called an induced automorphism on A.
We give a lemma which asserts existence of a Banach limit.

LEMMA 1. For a sequence {x,} (n=1,2, ---) of real mumbers there
exists its Bamach limit (notation; LIM (x,)) of the following properties.

(1) For any sequence {x,} (n=1,2, ---) we have

lim inf (x,) <LIM (x,) <lim sup (x,) .
(2) For any two real mumbers a, B and two sequences {z,} and
{¥.} m=1,2, ---) we have '

LIM (ax,+ By,) =a-LIM (x,)+ 8- LIM (¥,) .

3. Finite invariant measures

In this section we consider an automorphism 7 on a fixed probability
measure space (2, B,m). We prove two existence theorems of a finite
T-invariant measure p with p~m.

THEOREM 1. There exists a finite T-invariant measure p with p~m
iof and only if T is compact.

PrOOF. Necessity: Let x be a finite invariant measure on (2, B)
with g~m. Then g and m are mutually uniformly absolutely continu-
ous. Let ¢ be an arbitrary positive number. For this ¢, there exists
»>0 such that if p(B)<y, then m(B)<e. For this 7, there exists 6>0
such that if m(A)<d, then p(A)<y. Therefore if m(4A)<é and B~A,
then, as p(B)=pu(A), we conclude m(B)<e, which means compactness of T

Sufficiency : Put p(A)=LIM <%kz m(T"A)). We show that 4 is a
n—oo =0
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finite invariant measure with g~m. We obtain the equality p(TA)=
#(A) from

lim (l L T"“A)—% ,§ m( T"A)) —0.

n—o \ N, k=0

We show that lim #(4,)=0 for any decreasing sequence of sets {A,}
(4,0A4,,, n=1,2, --.) with EA,L=¢. Let ¢ be an arbitrary positive
n=1

number. From the assumption there exists a natural number ¢ such
that m(T"A4,)<e (p=¢q, n=0, £1, +2, ...). Therefore we have

lim sup 1 nﬁ m(T*A,)<e
n k=0

for any natural number p with p>gq, which proves that x is a measure.
It is easy to see that p is absolutely continuous with respect to m. If
#(A)=0, then /1( 0 T"A):O. From this we have m(4)=0.

n=-—oo

We show two lemmas which are simple but useful to extend invari-
ant measures.

LEMMA 2. Let S be an induced automorphism on a measurable set
A of positive measure which is contained in the conservative part of 2.
Let p be an S-imvariant finite measure on A with p~m(A). Then there
exists a unique T-invariant o-finite measure v on the minimum invari-
ant set [A] including A such that v is equal to p on A and v~m([A]).

In particular if Sp(w; A)dp(w)< oo, then v is finite on [A].

PrROOF. Put A,={e;p(w; A)=q} (g=1,2,--:). The minimum in-
variant set [A] including A is represented as the form

( oU T"A,,) UN,

g=1 k=0

where N is a measurable set with m(N)=0. We define a measure »
on [A] by

WB)=3 5 uT~BNA,)

for any measurable set B with Bc[A4]. If Sp(w; A)dp(w)< oo, then

v([A]):S P(w; A)dp(w)<oo. We can verify that v satisfies all the con-
ditions [2].

LEMMA 3. If there exists a countable decomposition {2,} (2, € B,
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n=1L12,--.) of 2 and a sequence {1,} (n=1,2, ---) of (¢-) finite T-invari-
ant measures such that p, is defined on the minimum T-invariant set
[2,] including 2, with p,~m([2,]), then there exists a (s-) finite T-invari-
ant measure p with p~m.

ProoF. Put A,,:[Q,,]—nL_Jl[Q,C] (n=1,2,...). It is obvious that 2=

k=1

U A4,, A,NA,=¢ (n#m) and TA,=T"'A,=A, (n=1,2, ---). We define
n=1
a o-finite measure p on (2, B) by

ME)=3 p(ENA,)  for any measurable set E.

As A, (n=1,2,--) is an invariant set, ¢ is an invariant measure. In
particular if p,([2,])<oo (r=1,2, ---), then we can choose a sequence of

positive number {a,} («,>0, n=1,2, ---) such that 2 ap(A,)<oco. Put-
ting p(E)= E au(ENA,), we obtain a finite T-mvarlant measure p with
p~m.

THEOREM 2. A necessary and sufficient condition for the existence
of a finite T-invariant measure p with p~m 1is the following :
For any >0, there exists a countable decomposition {2,} (n=1,2, ---) of
2 satisfying (1) and (2).

(1) For each n, for any measurable set A and any integer k such
that AcR,, T*Ac R, we have

m(A)/(L+e)S=m(T*A) (1 +e)ym(4) .
(2) Sp(w;gn)dm(a))<°° (n=1}21 "')’
where p(o; A)=min{n; T"w € A, n>0}- L (w).

PROOF. Necessity: We assume that there exists a T-invariant fi-
nite measure g on (2, B) with g~m. By Radon-Nikodym’s theorem,
there exists a non-negative measurable function f(w) such that

(%) m@)=| f@Mduw) (E<B).
We put

92n={w; (1+€)"§f(0))<(1+€)"+1} (’n:l, 27 i ') [
92n+l={G); (1+5)_"§f((")<(1+€)—"+1} (’I’l:-'—'—‘O, 11 29 . ') .

We have m(.Q-— QQ,,)=0, since 0< f(w)<co (a.e. g). Let A be any
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measurable set with Ac£,,. Let k be an arbitrary integer with T*AC
;.. Then by (*) we have

A+eyu(T*A) Sm(T*A) S(1+e)*'i(T*4),
A+eruA)=m(A) =1+ 'uA) .
From this, we obtain the inequality,
m(A)[(1+e)=m(T*A)=(1+eym(4) .

We obtain the same inequality when » is odd. We put 2.=2- G Q..
n=1

As it is trivial that Q. satisfies (1) and (2), we need only to prove (2)
for 2, m=1,2,--:). We have

S plw; 2,)dm(w) <(L+e)+o7 S po; 2,)diuw) (n: even),
| #0; 2)dm()< | pw; 2)dut@) (n: odd).

Therefore it is sufficient for the proof to show that Sp(m; A)dp(w)< oo

for any measurable set A. Put 4,={o; p(w; A)=q} (¢=1,2, --+). Not-
ing that T*A,NT¥A,=¢ ((k, Q)+, ¢), 0=k=q—1, 0=k'=q'—1), we
have

[ p0; Adp(o)=F aua)=3 S HT*4)

=,,( uU T"Aq>§y(!2)<oo .

q=1 k=0

Sufficiency : Let ¢ be a fixed positive number. Then there exists
a countable decomposition {2,} (n=1,2, ---) of 2 satisfying both condi-
tions (1) and (2). Let us fix this decomposition. Let us denote an in-
duced automorphism on 2, by S, (n=1,2, ---). It is easy to see that

we can construct such an automorphism S,, as Sp(m; Q)dm(w)< oo (n=
1,2, ---). If we can construct an S,-invariant finite measure p, on 2,
such that Sp(w;Q,,)dp,,(w)<oo and pm~m(@,) (n=12 --+), then by

Lemmas 2 and 3, we can construct a T-invariant finite measure on
Q. Therefore we shall construct such a measure p, on 2, with the pro-
perties. We denote S, and 2, by S and 2 respectively. We have

m(A)/(1+e) =m(S*A) = (1+¢e)m(A)

for any measurable set A with Acf. Let us define a set function x by
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1 n—1
#(A)=LIM (_ 5 m(SkA)) .
noco \ 99, k=0

We have m(A)/(1+e)<pu(A)<(1+e)m(A). It is easy to verify that p is
an S-invariant finite measure on 2, Sp(m; dp(w)<oo and p~m.

Remdrk. As we can see easily from the proof, the condition that
for any >0 there exists a countable decomposition {2,} (=12, ---)
of 2 satisfying the condition (1), is a necessary and sufficient one for
the existence of a o-finite T-invariant measure g with z~m. The author
heard that this result was obtained by L. K. Arnold in his doctoral
thesis of Brown University (1966).

4. o-finite invariant measure

Let T be an automorphism on a fixed probability measure space
(2, B, m} In this section we give two existence theorems of a o¢-finite
T-invariant measure p with p~m.

|
THEOREM 3. There exists a o-finite T-invariant measure p with
g~m zf and only if T is a-compact.

PROOF. Necessity: Let p be a o-finite invariant measure with g~
m. Then there exists a countable decomposition {2,} (n=1,2, ---) of 2
such tha‘rt #(82,)<oo (n=1,2, --.). Considering both measures g and m
as defined on £2,, they are both finite and equivalent. By the same way
as the first half of the proof of Theorem 1, we obtain the necessity.

Sufficiency: Let 2, be the dissipative part of 2. Then there exists
a wandering set A such that

Q=0 T"A, TANT"A=¢ (n<m).

n=—00

Put

,u(E)§= 2 m(T"ENA)  for any measurable set £ with EcC,.

It is easy to see that g is a o-finite invariant measure with p~m(2,).
Put 2¥=2,N(2—2,) (n=1,2,--.). It is obvious that every set QF is
T-compact. We define an induced automorphism S, (n=1,2, ---) on 2F.
Every set 2 is S,-compact. By Theorem 1 there exists a finite S,-
invariant measure g, on 2F with p,~m(2%). By Lemmas 2 and 3, we
obtain a o-finite T-invariant measure p with p~m(2—2,).

THEOREM 4. There exists a o-finite T-invariant measure if and
only if T 18 strongly o-compact.
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Proor. Sufficiency: It is obvious that T is s-compact. The result
follows from Theorem 3.

Necessity : Let px be a o-finite invariant measure with g~m. Then
by Radon-Nikodym’s theorem, there exists a non-negative measurable
function on 2 such that

m(E)=SE f(@)dmw) for any set EcB.

Let a be any real number with a>1. Put
2p={0; "< f(0)<a""'} (n=12-...),
Q2n+l= {(1); a—néf(w)<a—n+l} (n=0, 1, 2, * ') .

Then we easily obtain the result by the same way as the proof of Theo-
rem 2.

5. Decomposition theorem
THEOREM 5. The whole space has following unique decompositions,
Q=‘Qc+§c ’ ‘Qc=gco+§ca ’ .Qm:.ch-I—gcw y

2. : conservative part, 2, : dissipative part,
Q... o-compact part, Q... compact part.

The whole space is divided into two invariant sets QH(=0,+2.,), PH(=02—
0¥). We have a o-finite invariant measure p on Q% with p~m(2%).
Let A be an arbitrary set with AC2** and m(A)>0. We have no o-
fimite imvariant measure on A with p~m(4A).

Proor. It is well known that 2=0,+0,. If there exists no o-
compact set of positive measure in £,, then there is nothing to prove.

For we put 2.,,=¢ and 2,,=2,. Let us assume that there exists a o-
compact set of positive measure in £,. Then there exists a compact set
A of positive measure. Let S be an induced automorphism on A. Since
A is T-compact, it is also S-compact. By Theorem 1 there exists an S-
invariant finite measure g on A with z~m(A). We extend the measure
to the T-invariant set [A] by Lemma 2. We have thus proved that if
there exists a s-compact set of positive measure, then there exists a o-
compact invariant set of positive measure. Let F be a family of all
the o¢-compact invariant sets of 2. We put a=sup m(A). It is easy to

see that we obtain a g-compact invariant set A* with m(A*)=a. We put
0Q.,=A* 2.,=02.—2,,. Let B be a measurable set of positive measure
in 2,,. Then B is not g-compact. If there exists no compact invariant
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set of positive measure in 2., then we put 2.,.=¢, 2..=2,. If there
exists a compact invariant set of positive measure, we also obtain

the maximal compact set A*. We put 2..=4* 2.=2.,—2... It is
obvious that each decomposition is unique with exception to a set of
measure 0. The last statement follows from the above.

Remark. The theorem remains true if we exchange o-compact for
strongly o-compact. The o-compact part of 2 and the strongly ¢-compact
coincide.
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