FINITE AND INFINITE INVARIANT MEASURES FOR A MEASURABLE TRANSFORMATION

YOSHIHIRO KUBOKAWA

(Received Nov. 8, 1968)

1. Introduction

Let T be a one-to-one non-singular bi-measurable transformation of a probability measure space (Ω, B, m) onto itself. We consider the existence of measures which are invariant under the transformation T and equivalent to the measure m. Roughly speaking we show the following There exists a finite invariant measure if and only if the transformation is compact (Theorem 1). There exists a finite invariant measure if and only if the transformation is almost periodic (Theorem 2). Theorem 3 is a generalization of Theorem 1 to a σ -finite case. There exists a σ -finite invariant measure if and only if the transformation is σ-compact. Theorem 4 is a stronger version of Theorem 3. The notion "Compact and σ -compact of the transformation" is introduced here (Definitions 1, 2). The last theorem is a decomposition theorem. The whole space Q is divided into two invariant sets such that in one of them we can construct a σ -finite invariant measure and in any part of the other we cannot construct any σ -finite invariant measure which is equivalent to m and not identically zero (Theorem 5). The proofs are based on the existence of Banach limit and so-called induced transformations.

2. Notations, definitions and lemma

Let (Ω, B, m) be a measure space, i.e., Ω be an abstract space, B be a σ -algebra of subsets of Ω and m be a measure defined on B. We consider only a σ -finite measure space here. Let (Ω, B, μ) and (Ω, B, ν) be two measure spaces. The measure μ and ν are said to be equivalent (notation; $\mu \sim \nu$), if they are mutually absolutely continuous. If μ and ν are equivalent on a measurable set A, then we denote it by $\mu \sim \nu(A)$. The measure ν is said to be uniformly absolutely continuous with respect to the measure μ , if for any $\varepsilon > 0$, there exists $\delta > 0$ such that $\nu(E) < \varepsilon$ for any measurable set E with $\mu(E) < \delta$ [3].

A one-to-one transformation of a probability measure space (Ω, B, m)

onto itself is said to be bi-measurable if both T and T^{-1} are measurable. The bi-measurable transformation T is said to be non-singular (with respect to m), if $m(TE)=m(T^{-1}E)=0$ for any measurable set E with m(E)=0. We call a non-singular bi-measurable transformation of (Ω, B, m) onto itself an automorphism on (Ω, B, m) for brevity. Let T be an automorphism on (Ω, B, m) . The measure m is said to be (T-)invariant, if $m(T^{-1}E)=m(TE)=m(E)$ for any measurable set E. A measurable set A is said to be (T-)equivalent to a measurable set B (notation; $A \sim B$), if there exist two countable decompositions $\{A_n\}$ and $\{B_n\}$ $\{n=1,2,\cdots\}$ of A and A respectively and a sequence $\{i(n)\}$ $\{n=1,2,\cdots\}$ of integers such that A is some natural number A.) ([1], [2]).

DEFINITION 1. From now on we fix a probability measure space (Ω, B, m) and consider an automorphism T on Ω . A measurable set A is said to be (T-)compact, if it satisfies the following: For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $m(B) < \delta$ and $B \subset A$, then $m(B') < \varepsilon$ for any measurable set B' with $B' \sim B$ and $B \subset A$. A measurable set A is said to be strongly (T-)compact, if it satisfies the following: For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $m(B) < \delta$ and $B \subset A$, then $\sum_{i=1}^{\infty} m(T^{n_i}B_i) < \varepsilon$ for any countable decomposition $\{B_i\}$ $(i=1,2,\cdots)$ of B and any sequence of integers $\{n_i\}$ $(i=1,2,\cdots)$ with $\bigcup_{i=1}^{\infty} T^{n_i}B_i \subset A$.

Remark. Let $\Omega \sim \Omega'$ and denote this equivalence by α , i.e., $\alpha = (\{\Omega_n\}, \{i(n)\})$ $(n=1, 2, \cdots)$. We define a measure m_{α} by

$$m_{\alpha}(E) = \sum_{n=1}^{\infty} m(T^{i(n)}(E \cap \Omega_n))$$
 for any $E \in B$.

We can show that the whole space Ω is T-compact if and only if $\{m_a\}$ is weakly sequentially compact.

DEFINITION 2. The automorphism T is said to be (strongly) compact, if the whole space Ω is (strongly) T-compact. A measurable set A is said to be (strongly) σ -compact (with respect to T), if there exists a countable decomposition $\{A_n\}$ $(n=1,2,\cdots)$ of A such that every set A_n $(n=1,2,\cdots)$ is (strongly) T-compact. The automorphism T is said to be (strongly) σ -compact, if the whole space Ω is (strongly) σ -compact with respect to T.

Remark. If a measurable set A is compact, then it is bounded in the sense of Hopf [1]. If a measurable set A is σ -compact, then it is σ -bounded in the sense of Halmos [2].

Here we explain so-called induced transformations ([2], [4]). Let A

be a measurable set contained in the conservative part of Ω . We define an integral-valued function $p(\omega; A)$ on Ω by

$$p(\omega; A) = \min\{n; T^n \omega \in A, n > 0\} \cdot \chi_A(\omega),$$

where we put $p(\omega; A) = \infty$, if $\omega \in A$ and $\{n; T^n \omega \in A, n > 0\} = \phi$. Put $A' = A - \bigcup_{n = -\infty}^{\infty} T^n \{\omega; p(\omega; A) = \infty\}$. Then m(A') = m(A) and $p(\omega; A') = p(\omega; A)$ for any $\omega \in A'$. We define a transformation S of A onto itself by

$$S\omega = \left\{ egin{array}{ll} T^{p(\omega;\,A)}\omega & & ext{if } \omega \in A' \; , \\ & & & ext{if } \omega \in A - A' \; . \end{array}
ight.$$

The transformation S is a one-to-one non-singular bi-measurable transformation of A onto itself and called an induced automorphism on A.

We give a lemma which asserts existence of a Banach limit.

LEMMA 1. For a sequence $\{x_n\}$ $(n=1, 2, \cdots)$ of real numbers there exists its Banach limit (notation; LIM (x_n)) of the following properties.

(1) For any sequence $\{x_n\}$ $(n=1, 2, \dots)$ we have

$$\lim_{n\to\infty}\inf(x_n)\leq \underset{n\to\infty}{\text{LIM}}(x_n)\leq \lim_{n\to\infty}\sup(x_n).$$

(2) For any two real numbers α , β and two sequences $\{x_n\}$ and $\{y_n\}$ $(n=1, 2, \cdots)$ we have

$$\underset{n\to\infty}{\text{LIM}} (\alpha x_n + \beta y_n) = \alpha \cdot \underset{n\to\infty}{\text{LIM}} (x_n) + \beta \cdot \underset{n\to\infty}{\text{LIM}} (y_n) .$$

3. Finite invariant measures

In this section we consider an automorphism T on a fixed probability measure space (Ω, B, m) . We prove two existence theorems of a finite T-invariant measure μ with $\mu \sim m$.

THEOREM 1. There exists a finite T-invariant measure μ with $\mu \sim m$ if and only if T is compact.

PROOF. Necessity: Let μ be a finite invariant measure on (Ω, B) with $\mu \sim m$. Then μ and m are mutually uniformly absolutely continuous. Let ε be an arbitrary positive number. For this ε , there exists $\eta > 0$ such that if $\mu(B) < \eta$, then $m(B) < \varepsilon$. For this η , there exists $\delta > 0$ such that if $m(A) < \delta$, then $\mu(A) < \eta$. Therefore if $m(A) < \delta$ and $B \sim A$, then, as $\mu(B) = \mu(A)$, we conclude $m(B) < \varepsilon$, which means compactness of T.

Sufficiency: Put $\mu(A) = \coprod_{n \to \infty} \left(\frac{1}{n} \sum_{k=0}^{n-1} m(T^k A) \right)$. We show that μ is a

finite invariant measure with $\mu \sim m$. We obtain the equality $\mu(TA) = \mu(A)$ from

$$\lim_{n\to\infty} \left(\frac{1}{n} \sum_{k=0}^{n-1} m(T^{k+1}A) - \frac{1}{n} \sum_{k=0}^{n-1} m(T^kA) \right) = 0.$$

We show that $\lim_{n\to\infty} \mu(A_n)=0$ for any decreasing sequence of sets $\{A_n\}$ $(A_n\supset A_{n+1},\ n=1,2,\cdots)$ with $\bigcap_{n=1}^{\infty}A_n=\phi$. Let ε be an arbitrary positive number. From the assumption there exists a natural number q such that $m(T^nA_p)<\varepsilon$ $(p\geq q,\ n=0,\pm 1,\pm 2,\cdots)$. Therefore we have

$$\lim_{n\to\infty}\sup\frac{1}{n}\sum_{k=0}^{n-1}m(T^kA_p)\leq \varepsilon$$

for any natural number p with $p \ge q$, which proves that μ is a measure. It is easy to see that μ is absolutely continuous with respect to m. If $\mu(A)=0$, then $\mu\Big(\bigcup_{n=-\infty}^{\infty}T^{n}A\Big)=0$. From this we have m(A)=0.

We show two lemmas which are simple but useful to extend invariant measures.

LEMMA 2. Let S be an induced automorphism on a measurable set A of positive measure which is contained in the conservative part of Ω . Let μ be an S-invariant finite measure on A with $\mu \sim m(A)$. Then there exists a unique T-invariant σ -finite measure ν on the minimum invariant set [A] including A such that ν is equal to μ on A and $\nu \sim m([A])$. In particular if $\int p(\omega; A) d\mu(\omega) < \infty$, then ν is finite on [A].

PROOF. Put $A_q = \{\omega; p(\omega; A) = q\}$ $(q = 1, 2, \dots)$. The minimum invariant set [A] including A is represented as the form

$$\left(igcup_{q=1}^{\infty}igcup_{k=0}^{q-1}T^{k}A_{q}
ight)\cup N$$
 ,

where N is a measurable set with m(N)=0. We define a measure ν on [A] by

$$\nu(B) = \sum_{q=1}^{\infty} \sum_{k=0}^{q-1} \mu(T^{-k}B \cap A_q)$$

for any measurable set B with $B \subset [A]$. If $\int p(\omega; A) d\mu(\omega) < \infty$, then $\nu([A]) = \int p(\omega; A) d\mu(\omega) < \infty$. We can verify that ν satisfies all the conditions [2].

LEMMA 3. If there exists a countable decomposition $\{\Omega_n\}$ $\{\Omega_n \in B\}$

 $n=1, 2, \cdots$) of Ω and a sequence $\{\mu_n\}$ $(n=1, 2, \cdots)$ of $(\sigma$ -) finite T-invariant measures such that μ_n is defined on the minimum T-invariant set $[\Omega_n]$ including Ω_n with $\mu_n \sim m([\Omega_n])$, then there exists a $(\sigma$ -) finite T-invariant measure μ with $\mu \sim m$.

PROOF. Put $A_n = [\Omega_n] - \bigcup_{k=1}^{n-1} [\Omega_k]$ $(n=1, 2, \cdots)$. It is obvious that $\Omega = \bigcup_{n=1}^{\infty} A_n$, $A_n \cap A_m = \phi$ $(n \neq m)$ and $TA_n = T^{-1}A_n = A_n$ $(n=1, 2, \cdots)$. We define a σ -finite measure μ on (Ω, B) by

$$\mu(E) = \sum_{n=1}^{\infty} \mu_n(E \cap A_n)$$
 for any measurable set E .

As A_n $(n=1, 2, \cdots)$ is an invariant set, μ is an invariant measure. In particular if $\mu_n([\Omega_n]) < \infty$ $(n=1, 2, \cdots)$, then we can choose a sequence of positive number $\{\alpha_n\}$ $(\alpha_n > 0, n=1, 2, \cdots)$ such that $\sum_{n=1}^{\infty} \alpha_n \mu_n(A_n) < \infty$. Putting $\mu(E) = \sum_{n=1}^{\infty} \alpha_n \mu_n(E \cap A_n)$, we obtain a finite *T*-invariant measure μ with $\mu \sim m$.

THEOREM 2. A necessary and sufficient condition for the existence of a finite T-invariant measure μ with $\mu \sim m$ is the following: For any $\varepsilon > 0$, there exists a countable decomposition $\{\Omega_n\}$ $(n=1, 2, \cdots)$ of Ω satisfying (1) and (2).

(1) For each n, for any measurable set A and any integer k such that $A \subset \Omega_n$, $T^k A \subset \Omega_n$ we have

$$m(A)/(1+\varepsilon) \leq m(T^k A) \leq (1+\varepsilon)m(A)$$
.

$$(2) \int p(\omega; \Omega_n) dm(\omega) < \infty \qquad (n=1, 2, \cdots),$$

where $p(\omega; A) = \min\{n; T^n \omega \in A, n > 0\} \cdot \chi_A(\omega)$.

PROOF. Necessity: We assume that there exists a T-invariant finite measure μ on (Ω, B) with $\mu \sim m$. By Radon-Nikodym's theorem, there exists a non-negative measurable function $f(\omega)$ such that

$$(*) m(E) = \int_{E} f(\omega) d\mu(\omega) (E \in B).$$

We put

$$\Omega_{2n} = \{\omega; (1+\varepsilon)^n \le f(\omega) < (1+\varepsilon)^{n+1}\} \qquad (n=1, 2, \dots),
\Omega_{2n+1} = \{\omega; (1+\varepsilon)^{-n} \le f(\omega) < (1+\varepsilon)^{-n+1}\} \qquad (n=0, 1, 2, \dots).$$

We have $m\left(\Omega - \bigcup_{n=1}^{\infty} \Omega_n\right) = 0$, since $0 < f(\omega) < \infty$ (a.e. μ). Let A be any

measurable set with $A \subset \Omega_{2n}$. Let k be an arbitrary integer with $T^kA \subset \Omega_{2n}$. Then by (*) we have

$$(1+\varepsilon)^n \mu(T^k A) \leq m(T^k A) \leq (1+\varepsilon)^{n+1} \mu(T^k A),$$

$$(1+\varepsilon)^n \mu(A) \leq m(A) \leq (1+\varepsilon)^{n+1} \mu(A).$$

From this, we obtain the inequality,

$$m(A)/(1+\varepsilon) \leq m(T^k A) \leq (1+\varepsilon)m(A)$$
.

We obtain the same inequality when n is odd. We put $\Omega_{\infty} = \Omega - \bigcup_{n=1}^{\infty} \Omega_n$. As it is trivial that Ω_{∞} satisfies (1) and (2), we need only to prove (2) for Ω_n $(n=1, 2, \cdots)$. We have

$$\int p(\omega; \Omega_n) dm(\omega) \leq (1+\varepsilon)^{(n+2)/2} \int p(\omega; \Omega_n) d\mu(\omega) \quad (n: \text{ even}) ,$$

$$\int p(\omega; \Omega_n) dm(\omega) \leq \int p(\omega; \Omega_n) d\mu(\omega) \quad (n: \text{ odd}) .$$

Therefore it is sufficient for the proof to show that $\int p(\omega;A)d\mu(\omega) < \infty$ for any measurable set A. Put $A_q = \{\omega; p(\omega;A) = q\}$ $(q=1,2,\cdots)$. Noting that $T^kA_q \cap T^{k'}A_{q'} = \phi$ $((k,q) \neq (k',q'), 0 \leq k \leq q-1, 0 \leq k' \leq q'-1)$, we have

$$\begin{split} \int p(\omega; A) d\mu(\omega) &= \sum_{q=1}^{\infty} q \mu(A_q) = \sum_{q=1}^{\infty} \sum_{k=0}^{q-1} \mu(T^k A_q) \\ &= \mu \Big(\bigcup_{q=1}^{\infty} \bigcup_{k=0}^{q-1} T^k A_q \Big) \leq \mu(\Omega) < \infty . \end{split}$$

Sufficiency: Let ε be a fixed positive number. Then there exists a countable decomposition $\{\Omega_n\}$ $(n=1,2,\cdots)$ of Ω satisfying both conditions (1) and (2). Let us fix this decomposition. Let us denote an induced automorphism on Ω_n by S_n $(n=1,2,\cdots)$. It is easy to see that we can construct such an automorphism S_n , as $\int p(\omega;\Omega_n)dm(\omega)<\infty$ $(n=1,2,\cdots)$. If we can construct an S_n -invariant finite measure μ_n on Ω_n such that $\int p(\omega;\Omega_n)d\mu_n(\omega)<\infty$ and $\mu_n\sim m(\Omega_n)$ $(n=1,2,\cdots)$, then by Lemmas 2 and 3, we can construct a T-invariant finite measure on Ω . Therefore we shall construct such a measure μ_n on Ω_n with the properties. We denote S_n and Ω_n by S and Ω respectively. We have

$$m(A)/(1+\varepsilon) \leq m(S^k A) \leq (1+\varepsilon)m(A)$$

for any measurable set A with $A \subset \Omega$. Let us define a set function μ by

$$\mu(A) = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{k=0}^{n-1} m(S^k A) \right).$$

We have $m(A)/(1+\varepsilon) \leq \mu(A) \leq (1+\varepsilon)m(A)$. It is easy to verify that μ is an S-invariant finite measure on Ω , $\int p(\omega;\Omega)d\mu(\omega) < \infty$ and $\mu \sim m$.

Remark. As we can see easily from the proof, the condition that for any $\varepsilon > 0$ there exists a countable decomposition $\{\Omega_n\}$ $(n=1, 2, \cdots)$ of Ω satisfying the condition (1), is a necessary and sufficient one for the existence of a σ -finite T-invariant measure μ with $\mu \sim m$. The author heard that this result was obtained by L. K. Arnold in his doctoral thesis of Brown University (1966).

4. σ -finite invariant measure

Let T be an automorphism on a fixed probability measure space (Ω, B, m) . In this section we give two existence theorems of a σ -finite T-invariant measure μ with $\mu \sim m$.

THEOREM 3. There exists a σ -finite T-invariant measure μ with $\mu \sim m$ if and only if T is σ -compact.

PROOF. Necessity: Let μ be a σ -finite invariant measure with $\mu \sim m$. Then there exists a countable decomposition $\{\Omega_n\}$ $(n=1,2,\cdots)$ of Ω such that $\mu(\Omega_n) < \infty$ $(n=1,2,\cdots)$. Considering both measures μ and m as defined on Ω_n , they are both finite and equivalent. By the same way as the first half of the proof of Theorem 1, we obtain the necessity.

Sufficiency: Let Ω_0 be the dissipative part of Ω . Then there exists a wandering set A such that

$$arOmega_0 = igcup_{n=-\infty}^\infty T^n A \;, \qquad T^n A \cap T^m A = \phi \quad (n
eq m) \;.$$

Put

$$\mu(E) = \sum_{n=-\infty}^{\infty} m(T^{-n}E \cap A)$$
 for any measurable set E with $E \subset \Omega_0$.

It is easy to see that μ is a σ -finite invariant measure with $\mu \sim m(\Omega_0)$. Put $\Omega_n^* = \Omega_n \cap (\Omega - \Omega_0)$ $(n=1, 2, \cdots)$. It is obvious that every set Ω_n^* is T-compact. We define an induced automorphism S_n $(n=1, 2, \cdots)$ on Ω_n^* . Every set Ω_n^* is S_n -compact. By Theorem 1 there exists a finite S_n -invariant measure μ_n on Ω_n^* with $\mu_n \sim m(\Omega_n^*)$. By Lemmas 2 and 3, we obtain a σ -finite T-invariant measure μ with $\mu \sim m(\Omega - \Omega_0)$.

THEOREM 4. There exists a σ -finite T-invariant measure if and only if T is strongly σ -compact.

PROOF. Sufficiency: It is obvious that T is σ -compact. The result follows from Theorem 3.

Necessity: Let μ be a σ -finite invariant measure with $\mu \sim m$. Then by Radon-Nikodym's theorem, there exists a non-negative measurable function on Ω such that

$$m(E) = \int_{E} f(\omega) d\mu(\omega)$$
 for any set $E \in B$.

Let a be any real number with a>1. Put

$$\Omega_{2n} = \{ \omega; \alpha^n \leq f(\omega) < \alpha^{n+1} \} \qquad (n = 1, 2, \dots),
\Omega_{2n+1} = \{ \omega; \alpha^{-n} \leq f(\omega) < \alpha^{-n+1} \} \qquad (n = 0, 1, 2, \dots).$$

Then we easily obtain the result by the same way as the proof of Theorem 2.

5. Decomposition theorem

THEOREM 5. The whole space has following unique decompositions,

$$\Omega = \Omega_c + \overline{\Omega}_c$$
, $\Omega_c = \Omega_{c\sigma} + \overline{\Omega}_{c\sigma}$, $\Omega_{c\sigma} = \Omega_{c\sigma c} + \overline{\Omega}_{c\sigma c}$,

 $\Omega_{\rm c}$: conservative part, $\bar{\Omega}_{\rm c}$: dissipative part,

 $\Omega_{c\sigma}$: σ -compact part, $\Omega_{c\sigma c}$: compact part.

The whole space is divided into two invariant sets $\Omega^*(=\bar{\Omega}_c+\Omega_c)$, $\Omega^{**}(=\Omega-\Omega^*)$. We have a σ -finite invariant measure μ on Ω^* with $\mu \sim m(\Omega^*)$. Let A be an arbitrary set with $A \subset \Omega^{**}$ and m(A) > 0. We have no σ -finite invariant measure on A with $\mu \sim m(A)$.

PROOF. It is well known that $\Omega = \Omega_c + \overline{\Omega}_c$. If there exists no σ -compact set of positive measure in Ω_c , then there is nothing to prove. For we put $\Omega_{c\sigma} = \phi$ and $\overline{\Omega}_{c\sigma} = \Omega_c$. Let us assume that there exists a σ -compact set of positive measure in Ω_c . Then there exists a compact set A of positive measure. Let S be an induced automorphism on A. Since A is T-compact, it is also S-compact. By Theorem 1 there exists an S-invariant finite measure μ on A with $\mu \sim m(A)$. We extend the measure to the T-invariant set A by Lemma 2. We have thus proved that if there exists a A-compact invariant set of positive measure, then there exists a A-compact invariant set of positive measure. Let A be a family of all the A-compact invariant sets of A. We put A-sup A-compact invariant sets of A-compact invariant set A-compact invariant set A-compact invariant set A-compact invariant set of positive measure in A-compact invariant. If there exists no compact invariant invariant invariant.

set of positive measure in $\Omega_{c\sigma}$, then we put $\Omega_{c\sigma c} = \phi$, $\bar{\Omega}_{c\sigma c} = \Omega_{c\sigma}$. If there exists a compact invariant set of positive measure, we also obtain the maximal compact set A^* . We put $\Omega_{c\sigma c} = A^*$, $\bar{\Omega}_{c\sigma c} = \Omega_{c\sigma} - \Omega_{c\sigma c}$. It is obvious that each decomposition is unique with exception to a set of measure 0. The last statement follows from the above.

Remark. The theorem remains true if we exchange σ -compact for strongly σ -compact. The σ -compact part of Ω and the strongly σ -compact coincide.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] E. Hopf, "Theory of measure and invariant integrals," Trans. Amer. Math. Soc., 34 (1932), 373-393.
- [2] P. R. Halmos, "Invariant measures," Ann. Math., 48, No. 3 (1947), 735-754.
- [3] A. B. Hajian and S. Kakutani, "Weakly wandering sets and invariant measures," Trans. Amer. Math. Soc., 110 (1964), 136-151.
- [4] Y. N. Dowker, "Finite and σ -finite invariant measures," Ann. Math., 54 (1951), 595-608.
- [5] P. R. Halmos, Lecture on Ergodic Theory, Math. Soc. Japan, 1956.
- [6] Y. Kubokawa, "Boundedness of a measurable transformation and a weakly wandering set," to appear.