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Summary

The problem of testing the hypothesis of no difference among several
treatments for the case when the comparisons between the treatments
is possible only in pairs has been considered by Durbin [3], Bradley and
Terry [1], Elteren and Noether [4], and Mehra and Puri [6], among
others. Following the lines of Sen and Puri [9], a new approach to the
asymptotic theory of rank order tests for this problem is developed.
This avoids the unnecessarily complicated and lengthy conditional ap-
proach of Mehra and Puri [6] and also simplifies the proofs considerably.

1. Preliminary notions

Let us consider ¢ (=2) treatments in an experiment involving paired
comparisons, and suppose that for the pair (4, j) of treatments (1 <ig
j<t), the N, encounters yield the random variables X, =1, ---, Ny,
which are independent and identically distributed according to an ab-
solutely continuous cumulative distribution function (edf) F“?(z), for
1<i<j<t. The null hypothesis to be tested states that

(1) Hy: Fed@)+Fe)(—z)=1 and F’(z)=F(x) for all i%j,

that is, each F(x) is symmetric with respect to the origin and that
furthermore all the t(t—1)/2 cdf’s are identical.

Under the null hypothesis, all the X’s are independent and have
the common cdf F(x). Let Z{?=1 (or —1) if the rth smallest of N
(= E N,,) ordered absolute observat1ons (1 X!, 1=1, -+, Ny, 1215 0)

is from the (4, j)th pair and the corresponding X;;, is positive (or negative)
and otherwise let Z§{?=0. The proposed test statistic may then be de-
fined as
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t t 2
(1.2) Sy=ea) 3 33 NYTwa) o
i=1 \j=1 (1)
where A is some (positive) constant,
N
1.3) TN,U=§ Ey., I(Vl'rj)/Mj ’ 1<i<j<t,

and Ey,=Jy(r/(N+1)), r=1, ---, N are explicit functions of the ranks
satisfying the assumptions 1, 2 and 3 of section 2. For example, Ey,,
may be the expected value of the rth order statistic in a sample of size
N from the chi-distribution with one degree of freedom or from the
uniform distribution over (0,1). The test is based on Sy, rejecting the
null hypothesis (1.1) for significantly large values of it. The object of
the present paper is to develop the asymptotic distribution theory of
Ty, 1<i<j<t and of Sy. This generalizes the result of Sen and Puri
[9] to the multisample analog of the one sample case (but to the uni-
variate problem). This also supplies new proofs of the theorems to fol-
low, which are not only simpler and shorter than the corresponding ones
by Mehra and Puri [6] but also based on a direct approach instead of
the unnecessary complicated conditional approach of the latter paper
(cf. Part III). When t=2 and E,,=7/(N+1), then the Sy test coin-
cides with the symmetrical two-tail version of the one sample Wilecoxon
paired-comparison test. Similarly, with t=2 and taking Ely, as the ex-
pected value of the rth order statistic in a sample of size N from the
chi-distribution with one degree of freedom, we get the two sided version
of the normal scores one sample paired comparison test. Thus, depend-
ing on what Ey, we take, the Sy tests may be regarded as the multi-
sample analog of some one sample paired-comparison tests.

2. Joint asymptotic normality

Before proving the main theorem of this section we introduce a few
notations and assumptions.
Let ¢=t(t—1)/2 denote the number of all possible pairs and label

the pair (i, §) by a=(i—1)t+j—(i'2“), 1=i<j<t. Then X., -+, Xuy
are the observations corresponding to the ath pair, a=1,.--,c. Let
N =2i‘, N, and p=N,/N and assume that for all N, the inequalities
0<p‘;—§1p9’)§1—p0<1 hold for some fixed p,<1/¢ and a=1, ---,c.

Denote
2.1) F@(x)=N,;"' (number of X<z, I=1,---,N,),

2.2) H{(x)=N;* (number of | X, |<z, I=1,---, N,)
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=F{@)—F§—2—), 20,
@3  HO@=F®@)-F(-z-), @20,

@4  H@=SPHP@, H)=3PH@),
@5  F@=3dPFRe, F@)=36F0.

Then, T, . defined in (1.3) may be rewritten as

@6)  T.=| Jef I B dFR@+ Fi(—a ),

a=1,---,c.

N+1

Regarding the function Jy, we make the following assumptions (also
considered in Sen and Puri [9]).

ASSUMPTION 1. }Vim Jy(w)=Ju) exists for 0<u<1l, and is not a
constant; J(0)=0.

ASSUMPTION 2. S‘” [JN{ Nli HN(x)}—J{ Nl\i HN(x)”
(A {F§(2)+ F§(—2)} =0,(N~) .

ASSUMPTION 3. J(u) is absolutely continuous for 0<u <1 and|J“(u)|
=|d®J(w)/du® | < K[u(l—w)]’~*"'”2, i=0,1 for some K and some §>0.

THEOREM 2.1. Under assumptions 1 to 3, the random wvector [vN,
'(TN,l—ﬂN,l)y ) m(TN,c—‘uN,c)] where

@D o= JHOWF@+F(-n), =l

has a limiting normal distribution with mean vector zero and dispersion
matric (VN,N, oy ..) given by (5.12) and (5.13) respectively.

PROOF. Proceeding ekactly as in Sen and Puri [9], we write Ty,
as

4
(2.8) TN,a=ﬂN,a+BlN,a+BZN.a+§ Cuv,a y
where py,. is given by (2.7) and

(2.9)  Buw.= S: J{H@)}A{(F5(x)— F @)+ (Fy)(—2—)—F“(=2))},

210)  Bu.=| (H(e)~ HON (HE@))AF @)+ F(x)
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@11 Co=——i | B (H@)F @) +FiX—2-))

212) Cuv.o=| (Halw)— H@) (HOI(FS ()~ F(x))
+(F§N—w—) = F(—a))},

@13) Cw.={ [H N Hy@)] - T(HE) -

N
N+1 N+1
- T{H@) |- d{F2@)+ Fi(—a-)),

Hy()— H(z)|

(2.14) C;N,,,=S°°[JN{ N]il Hy(@ )} {Nlil
A{FF (@) +F5(—x—)} .

The term py . is finite by assumption 3, and the C-terms are all
0,(N~'?), the proof being exactly the same as in Sen and Puri [9]. The
difference v N.(Ty,.—tty,«)— ¥V NuBiy,.+ Buy..) tends to zero in probability
and so the vectors [VN,(Ty,.—pw,.), =1, ---,¢] and [VN.(Biy..+Bu..),
a=1, .-, c] possess the same limiting distribution, if they have one at
all. Thus to prove the theorem, it suffices to show that for any real

8., a=1, ---, ¢, not all zero, i‘,&,N,,”’(Bw,,+Bw,,,) has normal distribu-
a=1
tion in the limit. Now denoting ¢(u)=1 or 0 according as #=0 or not,

(2.15) By(Xa)=J[H(| Xt NH{e(Xo) —(1—e(Xoi))} — v,

Hy(a)} ]

and
(2.16) Cy(X.)= p‘”g [e(z—| Xi ) — HO(x)]J'[H(x) [ F“(2)+ F“(—x)],

we can express By .+ By, as

c N
(2.17) BlN,a+BZN,a = ﬂl)+ 2 {L Et Co(Xil)} ’
i=1 M i=1
Hence
glaa(BlN,a'l"BzN,a)
c 1 Ng e 1 N
=3 5“[7\7: 3 B(X.) +3 {7\7: 3! G Xa) ]
. c 1 N; ¢ e 1 Ng
=33 200 o+ S0 L 5 Bx)
B O e W I
=3[+ S oo 5]+ 5[ N2 B
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2.18 SRS

( . ) =t§ [W‘ EDO(}(u)] ’

where

(2.19) Dy(Xa) =Cu(Xu) 33 0.+ 8By Xo)

The c-summations given by (2.18) involve independent samples of
identically distributed random variables having finite 246’ moments.
Thus by the Central Limit Theorem, each sum properly normalized has
normal distribution in the limit and hence the sum of c-summations will
have normal distribution in the limit. The theorem follows. (The vari-
ance covariance terms of [VN,(Bu..+B:.), a=1, .-+, ¢] are computed
in the Appendix).

3. The limiting distribution of Sy under shift alternatives

From this section onward, we concern ourselves with a sequence of
admissible alternative hypotheses {Hy} which specify that for each a=
1, cee,C,

Hy: F(x)=F(x+p./N"), F(x)+F(—x)=1.
Then we have the following theorem.

THEOREM 3.1. If (i) of’—p with 0<p<1, a=1, ---, ¢, and (i)
the conditions of Theorem 2.1 are satisfied, then under the sequence {Hy}
of alternative hypotheses, the c=t(t—1)/2 random variables {N;’Ty,.,
a=1, -+, ¢} have asymptotically independent normal distributions with
means 7,, a=1, -+, ¢, and a common variance A*, where

v“"=2llam<8: %J{F(x)—F(—%)}dF(@) )
and
3.1) 4= Ja)ia.

The proof of this theorem is an immediate consequence of Theorem
2.1 and the facts that

1im NaaN, aa = Az ’ }Vim (NaNa')‘/zo‘N, aa’ = 0 ’

N—oo

and

lim Ny, =7 *.
N—oo

* Here we have assumed the regularity conditions which allow differentiation under
the integral sign.
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It follows therefore that the random vector W=(W,, - --, W,) where
W.=3 (NY*Ty,.;—n“?)/At'”* has a limiting normal distribution with mean
J#1

vector zero and a covariance matrix whose (j,7)th term is (3,,, —1/t)
where d,;, is the Kronecker delta. Consequently, we have the following
theorem :

THEOREM 3.2. Under the assumptions of Theorem 3.1, the statistic
Sy defined in (1.2) has asymptotically as N— oo, the mon-central chi-
square distribution with t—1 degrees of freedom amd mon-cemtrality par-
ameter dg where

32 ds=—p (| LIF@-F-a1aF@) 5[ S 000
For the special case, when all N,; are equal, that is, when the design
18 balanced,

8 d g
G A= (|, L P -F(—2) ) 3 0-0),

where

t
=1§1 0i/t .

4. Asymptotic relative efficiency

In this section we discuss briefly the asymptotic relative efficiency
(ARE) of the Sy test relative to the parametric competitor, that is, the
analysis of variance S-test, and the Durbin-Bradley-Terry D test. Van
Elteren and Noether [4] have shown that for the case of balanced in-
complete block designs, Durbin’s D test [8] and the analysis of variance
F-test are asymptotically distributed as non-central chi-square with t—1
degrees of freedom and non-centrality parameter 44 and 4 respectively,
where

4.1 dg=2 3 (0.~ 0Y]at—1),

where ¢* is the variance of F(x), and

(4.2) Ap=8F0) 3 (0:—FY/(t—1)

(f is the density of F). Furthermore, it was also shown by Van

Elteren and Noether [4] that the Bradley-Terry test [1] is asymptotically
equivalent to Durbin’s paired comparison test [3]. Hence, using a the-
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orem of Hannan [5], the Pitman efficiency of the S-test relative to the
F-test and the D-test are given by

43) o5 g=dg/dg=4c <S —[J{F(x) F(— x)}]dF(x)) /A2

and

@4 e p=dg/ap=2(\" L (J(F@)—F(—a)1dF @) /4710),
o dx

respectively. The above efficiencies depend upon the score function J,
and the underlying distribution function F. In what follows we shall
consider some special cases.

Special Cases

(a) Let J be the inverse of the chi-distribution with one degree of
freedom. Then the S-test reduces to the S(@)-test. In this case

_ ([T f@ds )
(4.5) esmﬂ‘”z(s-w m> ’

where ¢ is the standard normal density function whose cdf is @. This
efficiency is the same as that of the one or two sample normal scores
test relative to the Student’s t-test, and is known to be =1 for all F,
and is 1 if and only if F is normal. (Puri [7], [8]).

(4.6) eso) D=<S°° ¢{§2(133?m> / £%0).

This efficiency is the same as that of the one or two sample normal
scores test relative to the sign test. This equals /2, oo or 2/z accord-
ing as F is normal, uniform over (0,1) or double exponential respec-
tively.

(b) Let J be the inverse of the rectangular distribution over (0, 1).
Then the S-test reduces to the S(W) test. In this case

.7) esm,a=120(]"_fiaa) ,
and
4.8) esan,0=3(| Faz) /£10).

The efficiency (4.7) is the same as that of the one or two sample
Wilcoxon test relative to the Student’s ¢-test and is known to satisfy
eS(W),EFZO 864 for all F, esw), g=38/r~0.955 when F' is normal, and
esaw), g>1 for many non-normal distributions. (For the Gamma distri-
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bution with parameter p=1, e -S(W),9"=3') The efficiency (4.8) is the
same as that of the one sample Wilcoxon test relative to the sign test.
It is 3/2 if F is normal, and 3/4 if F is double exponential.

From (4.5) and (4.7), it follows that the asymptotic relative effici-
ency of the S(W) test relative to the S(®) test is given by

| Pexs )

4.9) esw), S@)=12( S“’ _ Sy
-« {0 [F(x)]}

The efficiency (4.9) is the same as that of the one or two sample
Wilcoxon test relative to the normal scores test. This is 3/x, 0 or 1.18
according as F is normal, uniform over (0, 1) or double exponential. In
fact eS(W)’ S(¢)§6/TC for all F.

Finally, from (4.3) and (4.4)

(4.10) ep ¢=401%0) .

This efficiency is the same as that of the one sample sign test relative
to the Student’s t-test. This is 2/z if f is normal, and is always =1/3,
provided F' possesses a unimodal density.

Appendix

5. Dispersion matrix of (VN,(Biy,.+Biw.,.), a=1,---,¢)

To obtain the dispersion matrix of (VN,(Biw..+Buw.), a=1, -+, ¢)
we use representation (2.9) and (2.10) of Byy,. and B,y. respectively.
Integrating B,y . by parts, we obtain

(5-1) BlN,c =D1N,a+-D2N,a

where

(62 Di.=—| (Fi@)-Fo@)J H@)HR),

(5.3) Dyy,.= — S: (F§(—x—)—F“(—ux))J' {H(x)}dH(x) .

Since E(B.y,.+ B:y,.)=0, we find that

(5'4) O'N,mx=var (BlN,a+B2N,a)=E(D1N,a+D2N,a+B2N,¢)2
=E(D1N,a)2+E(DZN,a)z_I_E(BZN,u)2+2E(DlN,aD2N,a)
+2E(D1N,aB2N,a)+2E(D2N,aBZN,a) .
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Denote
A (u, v)=F“(u){1-F“(v)},
B(u, v)=J' {H(w)}J' { H(v)}dH(u)d H(v) ,
C(u, v)=J"{Hw)}J' {H(v)} dH(u) d {F (v)+ F“(—v)} .

A(u, v)=J"{Hw)}J' {Hw)} d{F(u)+ F “(—u)}
- d{F(u)+F<(—v)} .

Then

6.5  EQu)=E| | (F@-Fo@)FERw)-Fow)
- J'{H()} J' ()} dH @) H)
=28 || FR@-Fo@)FEw-Fow)

0<T<Y< o

- J'{H(x)}J' {H(y)}d H(x)d H(y)

(5.6) =2 || a°@uBy.

T 0<T<y<oo

Note that the application of Fubini’s Theorem permits the interchange
of integral and expectation. Similarly

6.1 EDw)=— A®(—y, —0)B(z, V),
68 BBuy=2 040 || 149 0+a9—y a1 )

0<z<Y<oo

-\ A apeew ),

z=0Jy

(6.9) EDy,.Dwy,.)= 13,

a

L 4oy 9B ).

z=0 Jy=0

To compute E(D,y .B:y,.), we replace Hy(x)—H(x) in (2.4) by
i PP (Fi(x)— FP(x)) — (F¥)(—x—)—F¥(—2))

and obtain

(6.10) EQuw.Buw)=-—| || 4°@uco@y)

0<T<Yy< o

+ || 4w acwv)]

0<y<zr<oo
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+ L Aoy 9@ ).
=0 Jy=0

N
Similarly
(5.11) E(Dzzv,.,BZN,,)=% A(—y, 2)C(y, 7)
0<r<y<o
+ S S A“”(—x, —y)C“”(y, x)]
0<y<T<oo
1 © ® (a) (@
N Sx:o S,=o A=y, £)C(y, x) .

Hence, using the results (5.6) to (5.11) in (5.4), we obtain

(5.12) Noyu=2[ || [4°@0+4"(-y =)]B@ v)

0<z<y <o

- S S oS [A(w, y)C(x, y)— A (—y, x)C(y, 2)]

0<z<y <o

- S KPTADY, 1), Y)— A(—x, —y)C, ¥)]

0<y<r<o

+ Sw SN [B(z, ¥)+05°C (=, y) — 0 C(y, ©)]A“(—y, 2)]

+ornel (] 149w 0+ A%y 9w )

—o<r<Yy<»o

B S;o S:=o A=y, DA, y)] )

To compute the covariance terms, first note that because of the inde-
pendence of F{”(x) and F3(x) for a#d/,

E (D N, aDlN, a’) = E(Duv, nrDZN, a') = E( Dzzv, nDIN, a’)
= E(Dzzv, a-D2N, .') =0.

Hence, for a#d

0,00 =COV (Biy,a+Biy,as Bin,or+ Biow, )
=E(Dyy,.+ Diy,a+ Bin,o) (Diy, oo+ Doy, oo+ Bay, )
=E(D\y,Box,) + E(Dyx,Bsw, «)
+ E(Buy,«D1y, )+ E(Bay, o Doy, o) + E(Boy, « Box, o) -

Routine computations yield, for a#d
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(13) Novoo= || [-49%, 9@ 1)+ 49—y, —0)0=, )

0<r<y<oo

+ Ay, 2)Ca, 1)+ A~y —9)C(y, 2)]
+ || (400 20w »+ 49—, —)Cw, 2)

0<y<z<oo

+ Ay, B)C(, y)+ A2, —y)C(y, 2)]
+7 1 1y, 210, ) — Ay, ))C Ay, 2)

+ A=y, £)C(x, y)— A“(—y, ©)C(y, x)]
+560 || HO@0-Eow) T H) EH)

0<r<y<oo

. d {F(a)(x) + F(rx)( —_ x)} d {F(a)(y) + F(ﬂ)( — :l_/)} .
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