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1. Introduction

In some single server queueing situations the following queueing
model will be natural. The service-time distribution of a customer is
H,(t) or H,(t) according as the length of the waiting line behind him at
the moment of entering into service is less than or not less than a given
integer N(>0), where H,(t) and H,(t) are distribution functions in ¢=0,
which are arbitrary except that H,(0+)<1 and H,(0+)<1, and they
may be different. For example, we can conceive a service system in
which the speed of service is accelerated when the congestion of the
system exceeded some level.

In this paper we consider the model which is the standard M/G/1
queueing system except the above-mentioned assumption as to the serv-
ice time. A more general formulation is given in Harris [2], in which
steady-state properties are investigated. In what follows we shall study
some transient behaviors for our model in the case of N=1. We may
treat the case N=2 in the same way, but the reason we restrict our-
selves to the case N=1 is to avoid excessive complexity in expressing
the results.

We shall use the following notations after Takacs [1]:

A=the intensity of the input Poisson process;

= S: rd Hy(x) ;

&(t)=the number of customers in the system at the instant ¢
(0=t<);
r,=the instant of the nth arrival of customer (r=1,2, - - -, and 7,=0);
0 ="Tn41— T (’)?,:0, 1’ 2, -- ') ;
n.=the waiting time of the customer of the nth arrival (n=1,2, ---);
1.=the nth service time (n=1,2, ...);
7/ =the instant of the nth departure of customer (n=1,2, ---).
In addition we put z{=0 if £0)>0 and the initial service starts at time
zero, or £(0)=0;
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{»=§&(z;+0)=the number of customers in the system immediately
after the nth departure (n=1,2, --..).
Moreover, we put {,=&(0) if £0)>0 and the initial service starts at
time zero, or £(0)=0;

:/:a(s):S: e*dH,(x) for Rs>0,

¢b(s)=S: e-*dH,(x) for Rs=0.

2. Busy period

Let X, be the length of the initial busy period and let X}, X, - --
be the lengths of the successive busy perieds. It is obvious that X,
X, X;, -+ form a sequence of mutually independent random variables
and every X, (n=1) has the same distribution function. Let G(x) be

the distribution function of X, (n=1), and let @(xl&(O):i) be the distri-
bution function of X, under the condition that £(0)=¢ for i=1. For
the case where the server is idle at time zero, that is £(0)=0, we de-

fine G(x]&(0)=0)=1 for =0 and G(x|&(0)=0)=0 for <0. We put
(1) I(s)= S:’ e=dG(z) ,

(2) Fele=i)=| edGle0)=9),

for Rs=0. In this section we determine these Laplace-Stieltjes trans-

forms. First we cite the following lemma given in Takécs [1].

LEMMA 1. If Rs=0 and |w|<1 then z=p,(s, w), the root of the
equation

(3) z=w¢y(s+2(1—2))
which has the smallest absolute value, is

(4) (8, ) :jzl Z’j"'wj S: e~z I\ G H (1)

where Hj*(x) denotes the jth iterated convolution of H,(x) with itself.
This 18 a continuous function of s and w if Rs=0 and |w|<1 and,

Surther, z=r\(s, w) is the only root of (3) in the umit circle |z|<1 if

R3=20 and |w|<1 or Rs>0 and |w|<1 or Rs=0, |w|<1 and ia,>1.

Specifically, w,=71,(0,1) is the smallest positive real root of the equation

(5) 2=¢y(4(1—2)).
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Now consider an arbitrary busy period and let X be the length of
this period, let y be the length of the first service time in this period,
and let v be the number of customers who arrived during the time y.
Then

(6)  G@=| P(Xsalr=u,v=0}P{=0\y=u}dH,w)
+S: P{X <aly=u, v=1} P{v=1|y=u}dH.(x)
+3 |7 PX s lx=u,v=4) Plo=jr=utd Hw) .

Each term of the right-hand side of (6) is calculated as follows.
First,

uzc,
(7) PlX<z|y=u,v=0}=
uU>x.

Under the condition y=u, v=1, it is obvious that X is decomposed
so that

(8) X=u+X®,

where X is a random variable independent of y and v, which has dis-
tribution function G(x). Therefore,

Gx—w) u=swx,
(9) P{X<wx|y=u,v=1}=
u>w.

For j=2, under the condition y=u, v=j, we can see, using the
same argument as in Takdacs ([1], p. 61), that we may calculate the dis-
tribution function of X by introducing appropriate random variables and
decomposition of X into them. In fact when we introduce mutually in-
dependent random variables X, X®, ..., X{», independent of x and v,
where the distribution function of X® is G(x) and the distribution funec-
tion of X is K(x), which is the distribution function of the busy period
in the standard M/G/1 queue with the service-time distribution function
Hy(x), we can calculate the distribution function of X by considering
that X is decomposed as follows:

(10) X=u+XP+ - -+ XD+ X,
From this we have
G* K9 "x—u) u=zzx,

~(11) P{X=z|y=u,v=j}=
u>x.
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As, under the condition y=u, v distributes according to the Poisson
distribution with parameter iu, we have from (6), (7, (9) and (11)

12) G(a)= So e H (u)+ S:G(x—u)e-mzudﬂ,,(u)

Ms

+3 e KU-U*(m—u)e-m—_“J’_")’ dH,(u) .

I

Jj=2
Hence we obtain

3 AS)gu(s+2)
(13) M= T+ oo+ H—gds+ A=A

where
(14) As)= S” e dK(z) .

But it is known (Takécs [1]) that
(15) A(s)=r1:(s) ,

where y,(s) is the only root of the equation (3) with w=1 in the unit
circle. From (13) and (15) we have

o ro(8)gals+3) .
R Py Pt Wty Py T gy

The distribution function G(x), whose Laplace-Stieltjes transform is I'(s),
may be an improper distribution function. We next consider a condi-
tion that G(x) be a proper distribution function. As G(z) is bounded
(=1) and non-decreasing function, G(co)=lim G(z) exists. Hence, by

Abel’s theorem and noting Lemma 1, we get

)=l — wbﬁba(])
oo )= e L) = ) oA —ar)

Thus we have

a’bﬂba(x) <1.
S ot D) = gi—an)) =

In this inequality we have equality if and only if w,=1. For, put
Ji(8)=s[1—¢,(A)],
Si8)=u(A(1—38))—¢u(2) ,

for 0<s=<1. Then f//(s)= ZZS:e““"”ﬁdHa(m) >0, £1(0)=/3(0)=0 and f,(1)=
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fi()=1—¢.2). So fs)<fi(s) for 0<s<1, and the equality holds if and
only if s=1.

Now, by Lemma 1, w,=1 if and only if ¢, <1. Hence G()=1 if
and only if Aa,=1.

Summarizing the above results, we get the following.

THEOREM 1. I'(s) is given by

16 I'(s)= 70(8)¢a(8+2) ’
(19 ®) 75(8) + (s +2) — als+2(1 —714(3))]

where 1,(s) is the only root in the unit circle |z|<1 of the equation
amn z2=¢y(s+21—7)) .

G(z) is a proper distribution function if and only if ia=1. In
any case

0o)= wb¢a(2)
(18) )= - i=a)

and this is <1 if and only if Aa,>1.

Next we consider ﬁ(s[&(O):i). Here and in what follows, when
condition &(0)=1% is imposed for =1, we tacitly assume that the initial
service has started at the instant of time zero.

It is obvious that

(19) F(s|e0)=0)=1
and
(20) F(s]e(0)=1)=I1s) .

For 1=2 we have
@1)  G(x|e©0)=1)
= S” PX, <x|3®=u, =0} P{u® =03 =u} dHS > (u)
0

+3 S P{X,Su|3®=u, =5} PP =4 |z =u}dHS(w) ,
=1 J0

where 7 is the sum of the lengths of the first (i—1) service times
(accordingly the distribution function of ¥ is H™), and »® is the
number of customers who arrived during the time x{.

In the same way as above we have

G(x—u) uzze,
(22) P{X, S|y =u, s "=0}=
US>
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and

G *x K (x—u) usw ,
(3) P{X,<el®=u, »s°>=j}=[

0 u>x

for j=1. As, under the condition »®=wu, v{® distributes according to
the Poisson distribution with parameter iu, we have from (21), (22)
and (23)

(24) @(W|$(O)'—“’I:)= S: G(x—‘u)e_"‘de(i‘l)'(u)
From (24) and S: e *dK(x)=A(s)=7,(s), we have for i=>2
Ps160)=8)=T()[¢s {8+ AL~ 1o} =T (&) [r(o)]*~ .

Thus we have

THEOREM 2. For t=1, if the initial service has started at time
zero, f(s|$(0)=i) 18 given by

(25) I(s180)=3)=I(s) [rs(s))*,
where I'(s) is given by (16). As to the case 1=0, f’(s|$(0)=0)51.

3. The transition probabilities of {{.}

As is easily seen, {{, (i, &, - - -} forms a homogeneous Markov chain.
Let (p;) be the matrix of transition probabilities of this Markov chain
and put (»{P)=(p.)", n=1,2, ---. In this section we shall study prob-
abilities p{ :

(26) PP =P{L.=k|{=1}.

Let us determine the generating function

Ms

(27) S piwra = 33 U ew”
n=0 k=0 n=

for |w|<1 and |z|<1, where p{P=1 for i=k and p{=0 for i#k, and
(28) Un(2)=E{z"[5=1} .

Define v, is the number of customers who arrived during the nth service
time (n=1). Then we obviously have
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P{”M-l:jlcnélv G=1}= q;,
Ply,1=71622, L=1}=p;,

for all n=0, where

a,=| e am @),
7!

b= S“ =3 GH ().
0 7!

From these it is easily seen that

(29) Elz|(,<1, {=i]=¢.(1—-2)),
(30) Ezm{,22, {i=1]=¢,(21—2)) .
Now we can write that

(81) Gt =[L— 11" +vas1 s

where [a]*=max {a, 0}. Therefore, for n=1 we have

Ut,n+1(z) = E{zE‘n-ll++vn+1 | L= 1,}
=P{Cn§1[Co=i}E{z"n+1|Cn§1’ Co=?:}

+P{Cn22lCo='i}%E{z“"“lcnzz G=1} E{z|C, 22, { =1},

because, under the condition £,=2, v,,; and {, are mutually independent.
From this, using (29) and (80), we have

(32 Upn(e)=-LeO=ETIBD) 4,1 —2)) 4 o+ P21 —2)

Noting U,(z)=%', we have the following relation by forming the gen-
erating functions for both sides of (32):

@3)  [—wp(1—2)] 3 Unlapwr
=2t we (A1 —2) — a1 —2) 3 piPw”
+w{agA(1—2) — AL -2} 3 pPur

Differentiating both sides of (33) with respect to z, and then letting
z—0 we have

[L+ 20 (D) 3] P — () 33 piPwr
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14w 2 D5PW*[Pa(2) — o (D] +w E PPW Pau(2)+2¢4(2)]

_ for =0,
w é DPW[Pu(2) — Po(A)]+w g PEPWPa(2) + A5 (2)]
for +=1.
From this we have
< (1) gy — O
(34) Savwr= ] 1-wn@) Spwr-1],
and
(35) $1ppur =110 $ ppur, for izl

= wg) =
On the other hand from (33) we have
(36) Ul
= [t we gL -2~ (1 —2)) 3 pPw

0 (A1 —2)— A1)} T pipwr] /le—wgsGL—2)]
The left-hand side of (36) is a regular function of z if |2]<1 and |w|<1,
and the denominator of the right-hand side of (36) has exactly one zero
in the unit circle [z]<1 by Lemma 1. Then this zero must be a zero
of the numerator of the right-hand side of (86). Thus if we denote the
unique root of z2=w¢,(A(1—2)) in the unit circle by z=r=g(w), we get
for ¢ =0

(BT g (A1 —)—7] 3 pPwr+ [wg (L —7) 1] 3 piPwr=0.

From (34), (85) and (87) we have, for |w|<1,

@) S - wn@) —w .00 ) - e @)
=r— W[Sl’a(l(l - T)) - ¢u(2)] ’

and

@ {3 el —wlg -0}

=wda (A7t for i=1.

If in (38) or (39)
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{1 —wda(D} —w{g.(A1—7))— (D)} =0

for |w|<1, w#0, then w¢,(4)y=0 in any case. But if w+0, y=g(w)+*0
because of Lemma 1, hence w¢,(2)r+0, which is a contradiction. There-
fore,

7{1—wa(2)} —w{Pa(A1—7))— a2} # 0
for |w|<1, w#0. Then, from (38) and (39) we have, for |w|<1, w+0,

40 < ‘()g) n— T—w[Sba(z(l—T))_{ﬁa(l)] ,
(“0) B gD~ wiga(A—1)) ~ 4uD)]
and
41 Y pPwt= wea(A)y'
() A g D=l A=) —a@]
for ¢=>1.
Using (40), (34) and (41), (35) we have for |w|<1, w+0,
42 = 311) m— w[‘/’a(l(l—f))“%(l)]
“2) B g (D)= wlg A0 —1)—5a]
and
43 > gl) - [1_'u)¢'af('z)-.h‘i
) AP ] —wlg A=) =]
for i=1.

Putting (40), (42) or (41), (43) into (86), we finally have the following.

THEOREM 3. The higher transition probabilities {p’} are given by
the following generating functions :

@A) 3 S PPt
n=0 k=0

= {0y, () (1—g(w)} — lg(w) g, A1 —gw)} ]
+10g(10) 41— D) — (A1 —2)]
+ (L2 (L~ D) S (L —gw) —4. (1} /

[e—wg, (21 —2))] [g(w) {1 —wa(2)} —w {Pa(A(1 —g(w))) — Lu(D}],
lw|<1, w0, [z]|=1,

and for 1=1,

45) 3 3 pPwet
n=0 k=0
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= { 24 [wde(2) {L—g(w)} + {g(w) —we.(A(1 —g(w)))}]

+lo(w)]* [w2{¢a(A1 —2)) — £4(2(1 — 2))} +w (2 — 1)1 —2))] } /

[2—wds(A(1 —2))] [g(w) {1 —weba(2)} —w{Pa(A(L —g(w))) — a(D)}] ,
fw|<1, w0, |z|<1,

where g(w) is the only ome root im the umit circle |2]<1 of the equation
(46) z=wd(A(1—2)) .

4. The distribution of &%)

In this section we study the distribution of &(t) for arbitrary t.
Let P,(t)=P{&(t)=Fk|¢(0)=1¢}. By our assumption we have

Pik(t)zP{e(t)=k'C0=i} .

We shall determine the above {P,(t)}, and to do that, we begin with
the following.

LEMMA 2. The Py(t) (1=0) satisfies the following integral equation

@7) Pu(t)=Ci(t1e0)=i)—2 || [1—G(t—u)] Poau)i .
Moreover,
(48) 2 S Puw)du=3) Pl <t, 7,=0[¢,=1)

The proof given in Takics ([1], p. 66) holds valid in the case of our
model, too, and hence (48) holds.

LEMMA 3. Let us define

(49) Uis, 2) = E{exp (—st})e |, =1},
n=0,1,2,---,  for Rs>0 and |z|<1.

Then we have

(50) 33 Un(s?2)

=[5 0o O} 2 o201 -2 —guto+ 20-2)

+el § (Caler)) g+ 20—~ puGs+20—2)} ] /

n=0 z2=0

[e—¢u(s+2(1—-2))],
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where
(B) 3 Ua(s0)

S O 1 20) e (N R ¢ i) )
16)] 1= 2 guls+2)| (s +-20L—7(6)) — 5+

A+s
and
@ B(FE.
A e _[1__4 _ 0
[ty et [1- g+ 20— o

’

A
2+s

16)| 12— gu6+2) | (s A0~ 1(6)) — 5+

3 being 1 or 0 according as =0 or 121, and y(s) being the only one
root in the unit circle |z|<1 of the equation

(53) 2=¢u(s+A(1—-2)).

PROOF. Let v, be the number of arrivals during the nth service
and let 8* be the time interval between the nth departure and the im-
mediately following arrival of the customer. We write 1@, for y,. if
z,<1, and write y%; for y,.. if {,=22. Then we have

(54) Cn+l=[Cn—1]++Vn+l
and
ooF 62 if =0,

(55) 7-'1’1+1 = T:z"{" XS;QI if Cn= 1 y
T£L+x$lb-{?l if anz .

Here we know that y® or y is distributed according to H,(t) or Hy(?),
respectively, that 6% has an exponential distribution with parameter 2,
and that all 7., 6* and ¥ or %, are mutually independent. There-
fore, from (54) and (55), we have

U, w118, 2)=P{L,=0|C=1} E{exp (—s(z+0F + x:20)2 |8, =0, Co=1}
+ P{Z,=1|L, =3} E{exp (—s(ch+x20))2" =1, H=1}
+§z P{C,=k|C=1}E{exp (—s(th+x2))en 41| L =Fk, L =1}
=P{C,=0|¢, =1} E{exp (—s0¥)} E{exp (—s72)|{,=0}
- E{exp (—sys2)z (=0}
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+P{Cn 1|8, =1}E{exp (—sth)|{.=1}E{exp (—syi2)z"+|{,=1}
+2 P{Cn=kiC0=7’}E{exp(_87n)zk 1|Cn_k}
E{exp( —sy )z L=k} .

Now it is easily seen that

Efexp(— 80*)}—1—+s—

Efexp (—syR)zm+1|L, 1} =du(s+2(1—2)),
E{exp (—syR)z* L=k} =¢y(s+2(1—2)), k=2.
Hence we have

(56) Ui nsil8, 2)
= P{{,=0]0=1}E{exp (—s71)|C,=0}

(2 s+ A=)~ S s+ 212

+ P{L,=1|{,=1} E{exp (—s77)|L=1}
- {¢als+21—2)) — ¢u(s+ A1 —2))}

+%Um(s, gp(s+A(1—2)) .

Noting

(57) Uils, 0)= P{&=01¢,=1) Elexp (=) £, =0}
and

(58) (Wels.2))  —pie,=1t=4) Blexp (~seiC.=1},

and summing both sides of (56) over n, we have

59 |3 Uals D)} (z—gols+20—2))
=2{Uu(s, 2) —lim Us(s, 2)}

+ { 31 Uals, 0)}{ z‘:s ¢.L(s+x(1—z))—¢»(s+1(1—z))}

+2{ 3 <%)m}{¢a(s+z(1—z))—¢.,(s+z(1—z))} :

In the right-hand side of (59), 5‘_. U..(s, 0) and 2()(81]"5(;’ z)) » are abso-

lutely convergent for Rs>0, and lim U,(s, 2)=0 for Rs>0, |z2|<1. For,
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from (57) we have
|Uls, 0) |< P{£,=018=1) E{exp (— (Rs)e4) £, =0}
<3} P(¢,=416=1} Elexp (— (Rs)e})| G =1}
=Elexp (—(Re)h)| =1}

In the same way, from (58) we have

\ (W)uol < E{exp (—(Rs)z})|C=1}.

But, for n=1,
ntrt+Hnsa,
and y; is distributed according to H,(x) or H,(x), and hence for s fixed
E{exp (—(Rs)z7)|&=1} = [max {¢.(Rs), gu(Rs)}]",  nzl.
Therefore, for Rs>0

(60) 3 Blexp (—(Re)et)| =i} Smax - fffj;s) '3 fﬁj%s)] <oo

Hence Z U,.(s, z) and 2 (aUué(z& ?)

>0. Moreover, |U.(s, 2)|<E{exp(—(Rs)z,)|l,=1} for |z|<1, so from
(60) we have hm Ui(s,2)=0 for Rs>0, |z|<1. Accordingly in (59)
2 U..(s, 2) is convergent for Rs>0, |z|<1. Differentiating both sides
of (59) with respect to z, and then letting z—0, we have

> are absolutely convergent for Rs
z=0

(43006 + D} 5 Uules O] o+ 3 (P22 ]

=Uus, 0+ 33 Unls, O} {2 s+ + 29(6+2)

{M (am’é(:' z)), 0} {¢a(s+2)—do(s+A)} .

From this we have

n=0 oz
[1-—2 g6+ { 5 Uute, 0} ~Uits, 0
2+S n=0
Bu(8+2) '
On the other hand, from (59) we get
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62) 3 U(s2)

= [2Vts,2)+{ 5 Vs, O} o+ 200 =2) (s i1 —2)
12 5 (Wels D)) g (st 20-2)—gus+20-20} | /

[z—¢u(s+a(1—2))] .

The left-hand side of (62) is a regular function of z if |z|<1, and
the denominator of the right-hand side of (62) has exactly one zero z=
7(s) in the unit circle [2|<1 by Lemma 1. Then this zero must be a
zero of the numerator of the right-hand side of (62). Therefore, we
get

63 r&Uuls, i)+ {21 g (o-+20 10—} | 5 Ui, 0

T e+ 1)~ s+ 20— 5 (eleD)
=0.

From (61) and (63) we have

©) {30 0}[0uts+20—760) + (AL 1) 6+ —1(0)|
=Uu(s, 0)[9uls+ 2L —1(6)) —7(6)] — $uls+DVils, 1(5)

However,

(65) 2u(s+ 10— 1) + (AL —1)g, (04 ) —1(8) 20,

for, if the left-hand side of (65) is zero, the right-hand side of (64) is

also zero. Then, in the case of ¢=0, we have —%%gba(s-i—l)zo because

of Us(s, 0)=Uy(s, 7(s))=1, and in the case of 1=1, we have ¢.(s+2)[r(s)I’
=0 because of Uy(s, 0)=0 and U(s, 7(s))=[r(s)]. In any case we have
7(s)=0, but this is impossible as z=y(s) is a zero of z—¢,(s+4(1—2)).
Accordingly we obtain (51) from (64). Putting (51) into (61) we have
(52).

Now let IT,(s) be the Laplace transform of P,(t), that is,

(66) M@= e"Puttit,

for Rs>0 and 4, k=0,1,2, ---. We shall determine them.
THEOREM 4. The II,(s) is given by



ON SOME MODEL OF QUEUEING SYSTEM 103

1 .
% for iz1,

where

) (s)= 1(8)¢a(s+4)

Ot s+ ) —gulsIA—1 )

Proor. From Lemma 2 we have

_ [(s]&0)=1)
Hio(s)’_ S+1—1F(—S) ’

where I'(s) and I'(s|&(0)=1) are the Laplace-Stieltjes transforms of G(x)

and @(x[&(0)=i), respectively. Then, from Theorems 1 and 2 we get
the wanted result.

Define 6”=1 if 1=0, 6¥=0 if 10, s¥=1 if ¢=1 and &°=0 if
1#1. In the following we prove

THEOREM 5. For Rs>0 and |z|<1 i I,.(s)z* is given by
k=0

D,(s, 2)

(69) a II(s)z =m ’

where

(T0)  Dds, 2)=ITu(s)[s+2{1—2da(s +2(1—2))}]
+0{1+(2—1)da(s +A(1—2)) —2¢(s + (1 —2))}

oo

+z<a{n=_o[;';"(f’_’i}>zzo{¢,,(s+z(1—z))—¢a(8+2(1—z))}

+[{ 2 Uals, 9] — @0+ 3002 (1 - gu(s-+ 202}
Here i U..(s, 2) is given in Lemma 3 and II(s) is given in Theorem 4.
n=0

PrROOF. When {,=1, the event {¢(t)=Fk} for k=1, 1=0 can be de-
composed in the following way into the mutually exclusive events:

{&@)=k}

={{>0, t<7}{, and k—% customers arrive during (0, t]}
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U [}1 jL:JI{z{,gt<r£,+1, ¢,=7, and k—j customers
arrive during (z7, t]}]
U [Ql{nn:O, 1.2t<7,+ 7., and k—1 customers
arrive during (z,, t]}] .
But we have

P{{,>0, t<7}, and k—i customers arrive during (0, t]}
=P{;,>0, t<y, and k—i customers arrive during (0, ¢]}

[l—HG(t)]e"‘% for i=1,

= [1—H,,(t)]e-"% for 2<i<k,

0 otherwise,
P{r,<t<thu1, La=J, and k—j customers arrive during (7}, t]}
=S: Pz, <t<th+¥ne1> Ca=J, and k—j customers arrive
during (z}, tllchi=u, L=7}dP{z,=u, (=7}
S' (1— H ¢t —u)e-e-0 BE=WI gp < ¢,=1)
o a (k—l)! n= ’ n
for =1,
[ - Ee— e L ap(e <u, =)
0 (k—J)!
for 2575k
and
P{9,=0, t,<t<7,+1., and k—1 customers arrive during (z,, t1}
=S:P{nn=0, 7, St<7,+ 1., and k—1 customers arrive
during (z,, tl|t.=u, 7,=0}dP{z.=u, 7,=0}

_{ —ae—w LA(E— )1 i _
- S [1—H,(t—w)le —((k—:“ﬁ!—dP{réu, 7.=0} .

Hence, we obtain, for k=1, 1=0,

— SO — ~1t (Zt)k_l *[1 —at (lt)k—i
(1) Pult)=0P[1—H,()]e —DT +0%[1— Hy(t)]e H—DT

¢ _ _ -A(z-u)M i
+So [1—H,(t—u)le =1 dNu(u)
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e _ —aa—w_[AE—w)]*
+33 [, = He e PO 4N,

i _ —ie-w_[AE—U)* 5
2, 1= H—lerre LTI Patudu,
where 0X=1 for 2<i<k, and 6%=0 otherwise, and
(72) Nyw=3 Prsu G=jle=i},  jzl,

and (48) was used. From (71) we have

(M8) 3 Pult)e*=oP[1—H(t)lee™ ™"
=1
+ []_ — 5%0)] [1 — 5%1)] [1 — Hb(t)]zie—i(l-z)t
+ z S: [1 _Ha(t _— u)]e—l(l—z)(t—u)dN'ﬂ(u)

+51# || - Ht—wle > vdN, (w)
=2 )
+32 || (1~ Ht—u)le™=>"Pu(u)du .
Therefore,

W) S Hue)e=| o] 5 PavF|dt+1u(o)
_ o L= guls+20—2)]

s+2A(1—2)
+i1—ae 1 —ople —ssbisla Zilz - 2))]
[1—¢a(s+2(1_z))] —
e ii—2) "Uo ¢ dN“(t)]

[1—¢y(s+i(1—2))] < pg—
S Ez’[so e dNﬁ(t)}

[s+2{1—2¢.(s+2(1—2))}]
+ s+a(l—z) II,(s) .

On the other hand,

(75) 52[|"erany | =3 Uns 2
For, the left-hand side of (75) is:

Ms

p3 S‘” -2 d, P{ri<t, Lo=j|Co=1}

n=1
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= i Ef{exp (—stl)zn|C =1} = i Un(s, 2) .

Moreover, from (75) we have

oo

From (74), (75), (76), (67) and Lemma 3 we obtain the above theorem.
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