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1. Introduction and summary

The problem of statistical inferences in Markov processes has received
considerable attention during the last fifteen years. Much of the work
consists in carrying over to the Markov case the maximum likelihood
and chi-square methods from processes with independent identically dis-
tributed random variables. (See, for example, [1] and other references
cited there.) Alternative approaches have also been adopted [11], some
of which [7] refer to statistical inferences in more general processes.

It is not long ago that presumably the first paper [10] appeared on
nonparametric estimation of the density in the case of independent identi-
cally distributed random variables. Soon a number of others ([14], [8],
[13], [3], [6]) followed, which by using either similar or different methods
obtained further results.

The purpose of the present paper is to consider the nonparametric
estimation of densities in the case of Markov processes. The methods
being used and results being obtained here are similar to those in [9].
What we do specifically here is this: We first construct asymptotically
unbiased estimates for the initial and (two-dimensional) joint densities.
This is done in section 2. In section 3 these estimates are shown to be
consistent in quadratic mean, and furthermore a consistent, in the proba-
bility sense, estimate for the transition density is obtained. Finally, it
is proved in section 4 that, under suitable conditions, all three estimators
mentioned, properly normalized, are asymptotically normal. The appro-
priate versions of the Central Limit Theorem which are used for this
purpose are stated and proved in an appendix, so that the continuity of
- the paper will not be interrupted.

2. Asymptotically unbiased estimation of the initial and
(two-dimensional) joint densities

The results of this paper, like those of [9] and [3], rely heavily on
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a slight variation of a theorem of Bochner [2] that we formulate here.
By C(f) we will denote the set of continuity points of the function f.

THEOREM 2.1. Let (&, B™) be the m-dimensional Euclidean space
with the corresponding Borel o-fild and (R, B) the Borel real line, and
let K: (En, B™)— (R, B) be measurable and such that

2.1) K@) <M(<), 2€Em; SlK(z)ldz<oo ,

(2.2) Iz|™ K@) —0, as [z]|—c,

where ||-| is the usual norm in &,, and integrals without limits here
and thereafter are assumed to be taken over the whole space.
Furthermore, let g: (En, B™) — (R, B) be measurable and such that

2.3) oI dz<oo .

Define

2.4 gn(W)=h""(n)SK (zh7'(n)) g(x—2)dz ,

where {h(n)}, n=1,2, --- is a sequence of positive constants such that
(2.5) h(n)—0, as n— oo .

Then for x € C(g),
2.6) lim gn(x)zg(x)SK(z) dz, as m—oo.

If g is continuous on &£, , then the convergence (2.6) is uniform on
compact subsets of £,,.

For the proof of the first part of the theorem the reader is referred
to [8]. The uniform convergence assertion on compact subsets of &,
follows from the uniform continuity and boundedness of g on compact
subsets of &,,.

For later use, we now impose on the function K the further con-
dition

2.7) SK(z) dz=1.
Examples of functions satisfying conditions (2.1), (2.2) and (2.7) are

given in [9] and [3].
Let {X;}, 7=1,2, --- be a stationary Markov process defined on the
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probability space (2, J, P), and let p and g be, respectively, the initial
and (two-dimensional) joint density with respect to Lebesgue measures.
It is further assumed that p is strictly positive on R. Then (g/p)=t is
a transition density of the process.

For i=1, 2, we consider two functions K; such that K;: (&;, 3¥)—
(R, B) are measurable and satisfy conditions (2.1), (2.2) and (2.7). On
the basis then of the first n+1 random variables X, j=1,---,n+1 of
the Markov process, we define the following random variables (suppressing
the random element € Q)

(2.8) pi@)=(h(m) " 3 K@= Xph'(n) , 2 €&,
(2.9) @) =hm)" 3 K@= Y)hs') ,  ye&s,

where Y,;=(X;, X;41), j=1,:-+,n, and hy(n), hy(n) satisfy (2.5). For
convenient reference we will denote by (C/) the assumption that K; and
h, satisfy (2.1), (2.2), (2.7) and (2.5), ©=1,2. We intend to show that
p, and ¢, are asymptotically unbiased estimates of p and g, respectively.
More precisely, we have

THEOREM 2.2. Asymptotic unbiasedness. Under (C{) and (C)), re-
spectively, the random variables defined by (2.8) and (2.9) are asymptot-
ically unbiased estimates of p and q, respectively, in the sense that

Ep (x)—px), as n—oo, xeC(p),
and
Eq(y) —»qly), as mn—oo, yeC(q).

Furthermore these estimates are umiformly asymptotically unbiased
on compact subsets of £;, 1=1,2 if p and q are continuous on &, and
&,, respectively.

PROOF. The proof is an immediate application of Theorem 2.1. In
fact, writing h, and h, instead of h(n) and hy(n), we get

Ep,(z)=hi' | K(@—2hi")p(a) d2
=h;ISK1(zh;*)p(x—z) dz ,

and as m — oo, this converges to p(x), provided x € C(p); this conver-
gence is uniform on compact subsets of &, if pis continuous. Similarly,

Eq,.(y)=h;2SK2((y—z)hg‘)q(z) dz

=h;2§Kz(zh;l)q(y—z) dz
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and as n— oo, this converges to ¢(y), provided y € C(q); this conver-
gence is uniform on compact subsets of &, if ¢ is continuous.

3. Consistent and uniform consistent estimation

The results of this section as well as those of the next one are
derived under the additional assumption that the process satisfies hy-
pothesis (D;) ([5], p. 221). Namely,

HyproTHESIS (D,). (a) Condition (D) (Doeblin’s condition) is satisfied,
and (b) there is only a single ergodic set and this set contains no cycli-
cally moving subsets.

We first prove consistency in quadratic mean. We have

E[p.(x)—p(x)) =" [ pu(x)] + [E pa(®) — D()} ,

and the second term converges to zero, as n — oo, provided « ¢ C(p);
this convergence is uniform on compact subsets of &, if p is continuous
by Theorem 2.2. Next,

o [p(x)]=n""hi o [Ki((x — Xi)hi)]
+2nh)™ 35 Cov [Ki((z—X)hi™), Ki((x—X)hi")] ,

where the summation extends over all 4’s and j’s such that 1<i<j<n.
But

ke[ K((x— X)hi')]=hs ‘SKE((x—Z)hI )p(2) dz

—h hi* | K@= dz |

and for x € C(p) this tends to p(x)S X2)dz as n— oo by Theorem 2.1,

since SKI’(z) dz is finite, as is easily seen from (2.1). This convergence

is uniform on compact subsets of &, if p is continuous. As for the co-
variance we have:
Under hypothesis (D,), Lemma 7.1 in ([5], p. 222) applies and gives

|Cov [Ki((z— X)k"), Ki((x—X;)hi )| =270 [ E | Ky((x — X)hi )]
for some 7, p such that y>0, 0<p<1. Therefore
|(nh,)™ 3} Cov [K\((x— X)hi?), K((x—X)hiM]|

<(nh)'S (n—5)270 E | Ky((w— Xk )|
i=1

S(nh) e *(1— ") 127 E | K (2 — X)hi )
=27V (1 —p")h E | K((x— XA,
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and this last expression converges as n — oo to
21— ") @)Ky dz  for @eCp),

and the convergence is uniform on compact subsets of &, if p is con-
tinuous. Thus, if we assume that h,=h,(n) can be chosen so that

3.1) nhy(n) — oo , as n— oo,
it follows that
?p(x)] >0, as n—oo, xeC(p)

and this convergence is uniform on compact subsets of &, if p is con-
tinuous. Denoting by (C,), for convenience, the assumption that both
(C) and (3.1) are satisfied, we then get:
Under (C) and (D), E[p.(x)—p(x)*—0 as n—oco provided z e C(p),
and this convergence is uniform on compact subsets of &, if p is con-
tinuous.

In a similar fashion we get that:
Under (C,) and (D), Elq.(y)—q)]*— 0, as n — co, provided y € C(q),
and this convergence is uniform on compact subsets of &, if q is con-
tinuous. Here by (C,) we denote the assumption that both (C;) and (3.2)
are satisfied, where

(3.2) nhi(n) — oo, as m— oo,
Putting together these results we have the following theorem:

THEOREM 3.1. Consistency in quadratic mean (g.m.). Under (D,) and
(C)) and (Cy), respectively, the random variables defined by (2.8) and (2.9)
are comsistent in q.m. estimates of p and q, respectively, for x € C(p),
yeC(q); and they are uniformly consistent in q.m. estimates on com-
pact subsets of £;, 1=1,2 if p and q are continuous.

Of course, consistency in q.m. (and Tchebichev inequality) implies
consistency in the probability sense for = € C(p), y € C(q), and this con-
sistency is uniform on compact subsets of &;, 9=1,2 if p and ¢ are
continuous.

By taking into account now that the random variables (2.8) are to
be used in order to estimate the positive quantity p, one may assume
that K, is strictly positive. Under this condition a consistent estimate
of the transition density can be constructed. More precisely, we have

COROLLARY 3.1. Let

y=(,2)eC(@ and =zeC(p).
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We set

t('|2) = [qu(¥)[Da()] ,
and

H(x'[x)=[q(y)/p(x)] .

Then, as n— oo, t (') — t(a'|x) in probability and this convergence
is uniform on compact subsets of £, if p and q are continuous.

4. Asymptotic normality

In this section asymptotic normality of the estimators p,, ¢, and
t, will be obtained under some further restrictions on the process.
Actually, these results are merely an application of the results presented
in the appendix, and have also served as a motivation for the type of
assumption being made there.

In (Al) of the appendix we take h =mnhy(n). Then (Al) is satisfied
on account of (3.1) herein. Next for r=1 in (A2) and with L,(2) being
replaced by K,((x—=z)hi"), (A2) (i) and (A2) (iv) are automatically satisfied
on the basis of Theorem 2.1 here with af(x)=p(w)SKl’(z) dz, € C(p). As

for (A2) (ii) and (A2) (iii), they clearly follow from the assumption being
made below.

The joint densities of X, X; and X, X,, X, are bounded by M,(< )
for all 4, j such that

4.1) 1<isn, 1<i<j<n, n=238 --- .

In the appendix the positive integers a, 8, and p are introduced with
the property that they tend to infinity together with n and also satisfy
the properties:

Bpa*—0 and ahn'—0, as m—oo .
With the above choice of h, these relations become
4.2) Bua*—0 and ah(n)—0, as m—oo .
Theorem 1 in the appendix then becomes

THEOREM 4.1. Let assumptions (D,), (C)), (4.1) and (4.2) be satisfied.
Then for x € C(p),

L {(nhl)l/z[pn(x)—Epn(w)]} - N(O) a?(x)) ’ as n-— oo,

where

oi(e)=p(@) | K@) d2 .
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We next choose h,=nhj(n), and then (Al) in the appendix is again
satisfied by (3.2) herein. For s=2 in (A2)* and with L}(z) being replaced
by K,((y—2)h;'), (A2)* (i) and (A2)* (iv) are automatically satisfied on
account of Theorem 2.1 of this paper with aﬁ(y):q(y)SKf(z) dz, y € C(q).
As for (A2)* (ii) and (A2)* (iii), they follow in an obvious way from
(4.3) below.

The joint densities of Y3, Y; and Y,, Y;, Y, are bounded by My(< o0)
for all ¢, 7 such that

(4.8) 1<isn, 1<i<jsn, n=23, ...

We finally require a, 8 and g to tend to infinity as n— o, and be
such that

(4.4) Buat—0 and ahin)—0, as m—co.
Then Theorem 1* in the appendix becomes as follows.

THEOREM 4.2. Let assumptions (D,), (C,), (4.3) and (4.4) be satisfied.
Then for y € C(q) and such that q(y)>0, we have

LA{(nh)*[g.(¥)—Eq.(¥)]} = N(©,6i(y)), as n— oo,

where oiy)=q(y) SK (2)dz.

Finally we will examine the estimator of the transition densn‘,y from
the point of view of asymptotic normality.

In the first place we take h(n)=hi(n)=h(n), n=1,2, ... for sim-
plicity. Thus A, in the appendix is now h,=nh,(n)=nhi(n). Next (Al)**
(1) is again clearly true, and so is (Al)** (ii) with ! being p(x), 2 € C(p)
because of Theorem 3.1 herein. Furthermore (A3)** (i) follows from
(4.1) and (4.3), (A3)** (ii) is true with v(z, y)=—[q(y)/p(x)] by Theorem
2.2 herein, provided z € C(p), y € C(q), and (A8)** (iii) is also valid with
=0 on account of (4.1). Therefore Theorem 2 of the appendix becomes
as follows.

THEOREM 4.8. Let assumptions (D), (C), (Cy), (4.1), (4.2) and (4.3)
be satisfied. Then for y=(x, x') € C(q) such that x ¢ C(p), we have that the
law of

(nh)*{t(z'|2)— [EEy((y— Y )b~ EK\((x — X )h™)]}
converges to

N@©,ai(z, y)l"*(x)), as n— oo,
where
ai(, y)=ai(y) +v(, y)oi(x)
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and
o) =p(o) | K@) dz o) =a)|Ki(z) dz

v, ¥)=—[aw)/p®)], Uz)=p(=),
provided q(y)>0.

Appendix

In this appendix some minor generalizations of known results are
presented for the sake of completeness of the paper.

It is assumed throughout that the Markov process {X,}, n=1,2, ---
satisfies hypothesis (D,), and we set

Yj=(Xj’ Tty Xj+r—1) ’ ij(ij ) Xj-H-l) ’ j=1; 2’ Tty

where r and s are two integers greater than or equal to 1. We note
then that the processes {Y,}, {Z,}, =1, 2, - .- are Markov process which
also satisfy hypothesis (D,) ([5], p. 231).

For the formulation and proof of the first result here we need to
introduce some additional notation and make the following assumptions:

(Al) {A,}, n=1,2, --- is a sequence of positive constants such that
h,— oo, as n — oo,

(A2) For n=1,2, .-, {L,} is a sequence of uniformly bounded real-
valued measurable functions on (&£,, B°) such that

(1) E|L(Y)F is O(h,n™),
(i) E[fAY)fuY))| are O(hin™?) uniformly in j, 1<j<n,

(il) E|fu(Y)fAY)FAY,)| are O(hin*) uniformly in ¢ and 7,
1<i<jisn, n=2,8, ---,

(iv) h'ne'[L(Y)] — o} (for some ¢l<o0), as n— oo,
where f, is defined by
fY))=L(Y)—EL(Y)) .

From (A2) (iv) it follows that E|f(Y))]* is O(h,n!) and hence so is also
E|f.(Y,)} by the boundedness assumption of L,. The same boundedness
assumption and (A2) (ii) imply that E|fXY,)L.(Y;)| are O(hln~?) uni-
formly in ¢ and 7 with 14, j=1, ---, n, t#7.
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Under the regularity assumptions (A2) and an additional one which
we will make later on, the asymptotic normality of

(1) h;in jﬁﬂfn( Y)

will be established. In discussing the asymptotic normality of (1) we
follow a method parallel to the one used in proving Theorem 7.5 in ([5],
p. 228).

First, jznt fAY,) is split up as follows.
=1

Define
ym(n)= ; fn( YJ) ’

where the summation extends from (m—1)(@+8)+1 to (m—1)a+p)+a,

m=1, .-, 4, Yn(n)=3f(y;), where the summation extends from
J

(m—1)(a+p)+a+1 to m(a+pB), m=1, ---, p, y{,+1=§‘,f,,(Y,), where the

summation extends from g(a+pB)+1 to n. The numbers «, 8 and g are
positive integers which tend to infinity, as n — oo, and are such that
#(a+p) is the largest multiple of a+p which is <n.

Clearly, we get

Bt 5 F(Y) =k 5 yum) +hi 5 ym)
=1 m=1 m=1
It is first proved that
r+1
(2) ha'? 35 yn(n) — 0
m=1 .
in probability, as n — co (z— o).
By the Tchebichev inequality, it suffices to prove that
(3) hE| Sm)| >0, as nooo (uo o).
m=1

Under the hypothesis (D,), Lemma 7.1 in ([5], p. 222) applies and gives

Elyn(m)'spe,EL;(Y,)  for m=1, ..., p
and
Ely,nm)*<n—pma+p) e, EL(Y,) ,
where
=41 " (1—p?) 1,

the constants 7, and p, corresponding to the process {Y,}, j=1,2,--- .
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The Minkowski inequality gives
+1 2
BB S yhm) | Sk B YR B

Using then the previous two inequalities we get

B B ) S (Behi) " BV LA(Y)
and
B By, () S [n— e+ )1 Rz el BV LA(Y)) -

Now
By~ < ppat
as is easily seen, and hence
Bthit=(nh")(Ben ) < (nh:')(Bpa™) -
By choosing a, 8, and g to tend to infinity as n— oo so that
(4) Bpa™t—0,
we then get
(5) kP uEy(m)f—0, as m— oo (p— ),

by means of (A2) (i).
Next,

[n— pla+ B)Iha' = (nh;Y)[n—platpIn~' S(nh)p™
as is easily seen, and hence
(6) REVy, (m)P—0, as m— oo (p— o),

again because of (A2) (i). Relations (5) and (6) taken together imply
(3) and hence (2).
Next, we prove the asymptotic normality of

(7) h'"? g::lym(n) .
Setting
0.(t; m=F | exp| it 31 £.(¥)) i
and repeating the arguments used in ([5], p. 229), we get

E{ exp [it 3 y,,,(n)]} —nt; )+, |G <Zrott .
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Again, «, 8 and g are chosen so that they tend to infinity, as n — oo,
and such that

(8) pol— 0.
Then the characteristic function of (7) is essentially,
(9) Di(th:'”; m) ,

since {,— 0, as g — oo, by (8).
Now (9) is the characteristic function of Z‘, 2, where z,, m=

1, ---, ¢ are independent random variables with thelr common distribution
being that of h;'*y,(n). Thus, the asserted normality of (7) will follow
if we prove that

(10) (C./B;*)—0, as m— oo (p— ),
by Theorem 4.4 in ([5], p. 141), where

B,= EE(z), CF=§1E’|sz, (Elz[*< o) .

Now,
B@)=h'E[ 5(7)] ,
and
B $1£4Y)] =adlL(¥)1+2 Z BUA(Y)A(T)] .
Thus,

B, =(apn™")nh;" ¢'[ L(Y))] +2(apn™") ah,n ") S ELY)S(Y)] -
But
| 2 ELA(Y) (Y] éag IELA(Y) fu(Y )]l
=(ah,n') (a”'ha’n’) g IELfu(Y) (Y300l -

Therefore, by means of (A2) (ii), (A2)(iv) and the fact that apn—"'—1,
as n— oo (p— o0), as is easily seen, we obtain

B,—a}, as m— oo (g— o),
provided that there is a choice of « satisfying (4) and also
(11) ah,nt'—0, as n— oo,

for some choice of &, satisfying (Al).
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It remains for us to prove that C,—0 as n— oo (p— ). We
have

C,= 3 Blenl=phi "B | 7AY))| < whit™aBI f(Y
+3 3 ELfX Y)fu(Y)I+6 33 B (Y)Y ) fl( YR}
Now,
ph:aE| f( V)= (@pn mh; " E|f(Y) -0, as n—oo,
by (Al) and the remark following (A2). In a similar fashion,

B 53 BIfY) £(Y)| = (apm™Yahm i
 niah)F S EIFAYI(Y) =0, 8 m—oo,

by (Al), the remark following (A2) and (11). Finally,

phi® 33 B (YD £ ) LY =g~ fhi *n(ahs)™
° i<§<kE1fn(Yi)fn(Yj)fn(Yk)I_’O ’ as Nn— oo,

on account of (A1), (A2) (iii) and (11). Therefore
C,—0, as m—oo (g o),
and this establishes (10). Hence the following theorem has been proved.

THEOREM 1. Let assumptions (Al) and (A2) be satisfied. We assume
that a choice of a satisfying (4) can be made such that (11) is also satis-
fied. Then

.f{h;m ,El [L.(Y,)—EL( Y,)]} S NO,&), as n—oo,

provided o:>0 where oi=lim h;'nd’[L,(Y,)] as n— co.

Now let us replace the sequence {L,}, n=1,2, --- by a sequence
{L¥}, n=1,2, - - - of uniformly bounded real-valued measurable functions
on (&, %), and let g, be defined by

9Z)=L3(Z;)— EL3(Z,) .

If we impose upon L¥* and g, the same conditions we used in connection
with L, and f,, which we denote by (A2)* here, then, under (Al) and
(A2)*, we have a theorem analogous to Theorem 1. We will refer to it
as Theorem 1*. The variance of the limiting normal distribution in this
theorem will be denoted by oj.
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Remarks. In the various derivations in proving Theorem 1* we will
use the constant ¢, rather than ¢,, where c¢;=4y/%0y’(1—p*)"'+1, the
constants y, and p, corresponding to the process {Z;}, j=1,2, --- . There
is always a choice of @, 8 and g with the property that «, § and p are
positive integers tending to infinity with =, such that g(a+pg) is the
largest multiple of a+p which is <#» and for which both conditions
(4) and (8) (and the corresponding property: pof— 0 as n— oo (z— 0)),
are satisfied. This is explained in ([5], p. 230). That is, it suffices to take 8
to be the largest integer which is <n'* and a=p'. It follows then that
¢ is approximately 8 and all required conditions are satisfied.

We now proceed in proving asymptotic normality for a certain quo-
tient. For this purpose it is assumed that

EL(Y)#0, n=L2---,
and

hz ljé L.(Y;)—1 (#0 constant) in probability, as n — oo.
Then
el $122) ) 5 1Y) |- BLxZ)/EL(Y)]
j=1 j=1

is well defined and we intend to prove its asymptotic normality, under
some additional assumptions. It is easily seen that

wel[ S 102 / $(7) |- ELZ)EL (Y]

in

Il

[ Bt é LY J)] —lh,;“z jz:]l [LXZ;)—EL¥XZ))]

it 35 (L ¥) ~ EL(Y)]

I

[h;‘ jﬁ__'l Ly Yj)} T 12:1 le(W))—Epu(W))]

I

(1t 33 (¥ i 0w

where

v=—[EL}Z)[EL(Y)]™",

o Wy)=L¥X(Z))+v.L(Y)) ,

W) =0 W) —Eo (W),

W,=(X;, -+, Xj4oer)  (t=max(r, 9)) .
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By a well-known result (see, for example, ([4], p. 254)), it suffices then
to prove asymptotic normality for

hiin jz [e(W,)— Ep(W))] .

This last expression will clearly be asymptotically normal, provided ¢,
and ¥, satisfy a condition analogous to (A2). Below, a theorem referring
to the asymptotic normality of the expression in question is formulated,
and a set of sufficient conditions for this theorem to be true is given.
The conditions to be used in this subsection are

(Al** (i) EL(Y)#0, =n=12 ...,
(i) At i L(Y,)—1 (#0 constant) in probability, as n— oo.
j=1

(A2)** For n=1,2, .-, {¢,} is a sequence of uniformly bounded real-
valued measurable functions on (£,;, B*) such that the relations we get
if L, and f, are replaced by ¢, and ¥,, respectively, in (A2) are true.
(The relation corresponding to (A2) (iv) may be valid with a different
constant ¢} < o).

(A3)** (i) Both (A2)(ii) and (A2)(iii) remain true if any one or two
f’s are replaced by the corresponding ¢’s.

(ii) [EL¥Z)I[ELY)]'=—v,— —v (finite), as n—oo.
(iii) A 'nE[f(Y)g.(Z)] — o (finite) , as m-— oo,

THEOREM 2. Let assumptions (Al), (A1)** and (A2)** be satisfied.
We assume that a choice of a which satisfies (4) also satisfies (11). Then,
as n— oo, the law of

ne| £ Lx2) / 3 LAY) |~ ELHZ) EL(Y))]

converges to N(0,qil7%), by a theorem in ([4], p. 254), provided o:>0
where ay=lim h;'nd*[p.(Z,))], as n— . Furthermore, (A3)**, (A2) and
(A2)* form a set of sufficient conditions for (A2)** to be true, and there-
fore under (Al), (A2), (A2)*, (A1)**, (A3)** and a choice of a satisfying
both (4) and (11), the theorem 1is true. In this case ai=ai+v'a+2ve.

Proor. Clearly, for the first part of the theorem there is nothing
to be proved. As for the second part, we have to show that (A2),
(A2)* and (A3)** imply (A2)**. The uniform boundedness of {¢,}, n=
1,2, ... follows from that of {L,}, {L}}, n=1,2, ... and (A3)**(ii).
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Next, Elp (W)} is O(h,n"") by Minkowski mequahty, (A2) (1), (A2)*(i)
and (A3)**(ii). We also have

BT (W) UAW)]=E[9.Z2) 9 Z)1+v: ELf( Y1) (Y]
+0E19:(2) f(Y )1+ 0. E[f Y1) 9.(Z))]

from which it follows that E[¥ (W, ¥ (W,)] are O(h:n?) uniformly in
J, 1<j=m, by means of (A2)(ii), (A2)* (ii), the first part of (A3)** (i)
and (A3)**(ii). In a similar fashion replacing the ¥,’s by what
are equal to in E[¥,(W)¥(W)¥(W,)] and using (A2) (iii), (A2)*
(iii), the second part of (A8)** (i) and (A3)** (ii), we see that
ET (W)T(W)T(W,)] are O(kin~®) uniformly in 4 and j, 1<i<j<mn.
Finally,

hi'na o W)l =h; e[ LX(Z)}+vi hyna®[ L.(Y))]
+2v,h nE [ f(Y1)9.(Z))]

and this converges to o}+v'si+2vs as m— oo by (A2) (iv), (A2)* @iv),
(A3)** (ii) and (A8)** (iii). This completes the proof of the theorem.
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