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1. Introduction

Suppose that the p-dimensional random row vector 2=(2q, Tz, ==y Lp)
has a multivariate normal distribution with mean vector p=(u, t, ***, )
and covariance matrix X=(s;;). The test of the hypothesis that the
distribution of z is symmetric with respect to the components ;, &,
..., 2, is equivalent to the hypothesis denoted by H,., that the com-
ponents of the mean vector p are equal (z=(7, :--, ), 7 a constant),
that the variances are equal (o;;=¢% 1=1,2, .-+, D), and that the covari-
ances are equal (¢;;=d%, 1#j). The less restricted hypothesis H,, that
the variances are equal and that the covariances are equal (i.e., that ¥
has the intra-class correlational structure) may also be of concern.

Likelihood ratio tests for testing H.,. against the general alterna-
tives for testing H,, against general alternatives, and for testing H,..
against H,, have been derived by Wilks [7]. Wilks also considers methods
of obtaining the null distributions of these test statistics.

Wilks’ interest in the above statistical problem arose from a prob-
lem in psychological testing theory in which it is desired to test the
hypothesis that p examinations are “ parallel forms” of the same ex-
amination. To test this hypothesis, the p examinations are given to
each of N subjects. If the hypothesis is true, and if test scores for
each individual have a p-dimensional multivariate normal distribution,
then the means, variances, and covariances of the test scores should
obey H,...

However, further consideration of the above psychological problem
suggests that if the hypothesis of “parallel forms” holds, then a more
restricted hypothesis concerning the means, variances, and covariances
is appropriate. Since “parallel forms” of an examination presumably
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measure a common aptitude (or aptitudes) in each subject, one expects
that the p examination scores for each subject are equally and positively
correlated with one another. Thus, although under the hypothesis H,..
(or the hypothesis H,) we only require that the common correlation p be
restricted to the range from —1/(p—1) to 1 (so as to guarantee that 3 is
positive definite), we actually are interested in the restricted hypothesis
H,. (or the restricted hypothesis H;.) that requires p to fall in the range
from p, to 1, where p, is some nonnegative number.

A hypothesis of the form H,, is also of concern when we are
testing that the observations from a balanced one way analysis of vari-
ance design have a joint distribution obeying the assumptions of the
Model II Analysis of Variance. If z is one complete replication of the
design (one observation in each cell), then the Model II assumptions state
that « can be written as

=7, -+, vV)te=vete,

where e=(1,1, - -+, 1), v is a scalar random variable, v~ N(4, 73), e~ N(0,
22[,), and v and e are independently distributed. Consequently, if
the Model II assumptions hold, x~ N(fe, z3[(1—p)I+pe'e]), where 0=<p=
t}f(r2+7})<1. To test the fit of the Model II assumptions, we should
test Hr, (with 0=p,<p<1) against general alternatives. Box [3] con-
siders the problem of testing the Model II assumptions and obtains an
approximate test by ignoring the restriction p=0. Herbach [4] has ex-
tensively studied certain tests related to the model Hy, with p,=0, and
obtains some optimal properties of these tests.

In the present paper, we are interested in testing the hypotheses
H;, and H. against general alternatives. Once it has been established
that one of these hypotheses is an appropriate model for the data, we
are also interested in the estimation of the parameters p and . (For
the case p,=0, Herbach [4] obtains the MLE and discusses completeness.)

In section 2, maximum likelihood estimators for p and ¢* under H;..
and H’, are obtained. The exact and asymptotic distributions of these
estimators are also discussed in section 2. Section 8 is concerned with
deriving the likelihood ratio tests for H;, and H; against general
alternatives, and with finding the asymptotic null distributions of these
test statistics.

Before completing this introduction, it is useful to indicate the mean-
ings of some of the notation used in the following sections. The symbol
“~” means “is distributed as”; thus x~N(g, %) means that x has the
distribution of a multivariate normal random variable with mean vector
¢ and covariance matrix ¥. The notation .L(x)= N(g, 2) carries an equiv-
alent meaning. We use both notations since the “_L ”-notation is easier
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for use with convergences in law; thus, lim _(x,)=2 means that z, con-

n—+oco

verges in distribution to . The symbol y} denotes the law of a chi-
squared variable having d degrees of freedom ; the symbol B(a, b) denotes
either the law of a beta variable with @ and b degrees of freedom, or the
number [I'(a)[’(b)/['(a+b), depending on context. Finally, the symbol
“oc” means “is proportional to”.

2. Maximum likelihood estimators for the parameters of the co-

variance matrix under H,, and H

mvc

2.1) Preliminaries. Assume that we have N independent observa-
tions z®, £®, ..., ™ upon the random p-dimensional row vector . Re-
call that & has a multivariate normal distribution with mean vector g
and covariance matrix 3. A sufficient statistic for (g, 3) is (%, S), where

N
Z=(Zy, Ty, + -+, L) =N"' 3 2 is the sample mean vector, and S=(S,,)=
Jj=1

N
> (x® —x) (2 —7) is the sample cross-product matrix ((N—1)-'S is the
k=1

sample covariance matrix). It is a well-known result that Z and S are
independent, that Z~N(g, N-'3), and that S has the Wishart distribu-
tion W(2; p,n), n=N—1. The joint density of z and S is thus:

(2.1) (=, S)=c(p, n)(2r) PAN??| 3 |~¥2| S |-p-Dr2
. exp {-——;—{tr SIS+ Ntr I-4F— ) (@— p)}} ,

where ¢(p, n)= [2""/21:1’“"1’/‘ ]2[1 P(n——;’ﬂ> ]_1 and the range of definition
i=

for p(z, S) is S positive definite (i.e.,S>0), ¥ unrestricted.
We make use of the following lemma in section 2.2).

LEMMA 2.1. For any matrix A having the form A=al+be'e where
e=(1,1,---,1):

(i) A can be represented in the form A=I"DI', where I' is any
DX p orthogonal matrixz having first row p~'"e, and D=diag ((a+bp), a,
a, .-, a)’

(ii) |A—2aI|=(a—2)[a+bp—1].

Thus, under H,. the covariance matrix I can be reduced to diagonal
form by an orthogonal matrix whose elements are independent of the
parameters. This fact allows us to considerably simplify our calculations.

Before deriving the maximum likelihood estimators of p and ¢* under
H,,. and H;,, we indicate the precise form of the parameter space for
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each of these two hypotheses. The parameter space 2., for Hy., takes
the form:
2.2) n.={(p2): p=ne, n a constant, = [(1—p)[+peel,

the parameter space 2. for H;, has the form:
2.3) 25.={(s, 2): p unrestricted, S=d[(1—p)[+pee], *>0, p=p<1},

where g, is a given constant satisfying —1/(p—1)<p<1. Note that we
have allowed p, to be negative. For applications to the Model II analy-
sis of variance, g, is zero; for applications to the psychological testing
problem mentioned by Wilks [7], p, is of moderate size and positive.

2.2) Derivation of the maximum likelihood estimators of p and
3 under Q... and 27,.. Since (%, S) is a sufficient statistic for (g 2),
we begin our derivation of the maximum likelihood estimators (MLE)
of p and ¢* by considering the density (2.1). Motivated by Lemma 2.1
(and the remark following that lemma), we let y=+NzI" and V=ISI",
where I' is any pxp orthogonal matrix with first row p~'”%. Then,
under 27, (and under 27,,.C2;.), we have that y and V are independently
distributed, that y~N(&, D), and that V~W(D; p, n), where é=vNpl",
D=rzr'=diag{s,d, a3, -+, 03}, and

(2.4) d=d(1+(p—-1)p), a=d(l-p).
Note that the joint distribution of ¥ and V becomes
25) W, V)=c, n)2x) " e; Yoy TP | V| PTR
© €Xp {—% [Ul—z(vll'l'(yl—fl)z)'l‘ﬂz.z (é Vit é (yi—$¢)2> ]} .

From (2.5) it is easily verified that <y, D, ﬁ vu> is a sufficient statistic
1=2
for (¢ o?,0%). It may be directly verified that y, vy and i v,; are inde-
=2

pendently distributed, that oi%v;~%;, and that a2 é Vig ~Yap=1) +
i=2

To find the MLE of p and ¢?, first maximize with respect to & in
(2.5).

Case 1. For £¢=+/Npul" subject to the restrictions of the parameter
space 27, (i.e., & unrestricted), the MLE of ¢ is £=y so that

(2.6a) max Py, V)ocor¥a; VPV exp {—?1%-(0'1_2")114'0?2 ﬁ vu>} .
\ =2
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Case 1I. For & subject to the restrictions of 2., we have that
$=(51’ 0’ 01 ] 0): —°°<El<°°- Thus él=y1’ and

@60) _max  py,V)ecor¥o; "o exp |~ [otvutort 33 @t} -
€=(£1,0,0,+++,0) 2 i=2

= 1Y
—<g <

Case III. We can also consider the case 25, when g is assumed to
be zero. Then

(2.6c) max p(y, V)ocoi "oy VP exp {——;— [afz(vn+yi)+a;2 jé (vu+y§)]} .
Expressions (2.6a), (2.6b) and (2.6c) have a common form, namely :

Q2.7 ou,w= max oy, V)=car¥a; ¥*P exp {———[a1 2'u,+¢r;2'w]}

where ¢ is a normalizing constant and where » and w are given by

Case 1. u=wv,, 'w=é Vii »

i=2
Case II. u=wv,, w= i wut9) ,
Case III. u-:'vu“l'yg , w=é (vi1,+y)

In all three cases, w and w are independently distributed, u~dlyl, w~
o3y, where in Case I (v, ) equals (n, n(p—1)), in Case II (v, ;) equals
(n, N(p—1)), and in Case III (v, »,) equals (N, N(p—1)).

Let

1 7 —7y,0}
2.8 o==, =0"1%
(2.8) gl ol
where
— 1+(p—1)o .
l—po

Note that the transformation from (¢?, ¢3) to (6, 9) is one to one onto.
In terms of the new parameters ¢ and 4, the condition p=p, becomes
=0, and

(2.9) 0,2: 0‘§+(p_1)0§ :5+(To+p"‘1)0 s
p PO(3+7140)
(2.10) p=—d=___ 0+ (p—1)f

d+(p—1a o+(r+p—1)0"
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Reparametrizing (2.7) in terms of # and 6 and taking logarithms,
we obtain -
(2.11) 2log p(u, w)=Nlog 0+ N(p—1) log (3-+8y,) — O(u~+wye) —wd .

This function is strictly concave in # and 4§, so that its maximum is
achieved either in the interior of the positive orthant >0, >0, or on
the boundary 6>0, §=0. Differentiating (2.11) with respect to # and
6, we find that p(u, v) is maximized for

. = p—Du—ruwl,
uw

provided that (p—1)u—pyw>0. Otherwise, the maximum is achieved
when 6=0, in which case

f=_PN 5=0.
U~+wry
Consequently, we have
. if %> T
. N w” p—1
(2.12) ai=
) , if ﬂ_é 7o
N w p-—1"
w e U
L A— f % To_
\ (p—1)N tw” p—1
(2.13) gi=+
U+ Wy, , if _"f_é To ,
proN w  p-—1
or in terms of ¢* and p,
u+w if u 7o
pN ’ w” p—1’
(2.14) &=
(w+wr) (ro+p—1) if U< T
PN ’ w- p—1
(rp—Du—w ifr % 7o
_—, > ,
(rp—1)(u+w) w™ p—1
(2.15) o=
o : if < o,
w  p—1

The expressions for ¢* and p in terms of £ and S can now be work-
ed out for each case in (2.7) by substituting the following values for u
and w into (2.14) and (2.15):



TESTING FOR EQUALITY OF MEANS ETC. 39
» » »
Case 1. u=p'> s, wW=>,8;—u,
) i=1
» P ? _ P _\2
Case II. u=p'3>>s,, w=23 [su+N(w¢)2]—Np“(2 w¢> —u,
i =1 i=1

Y4 P Y4 2
Case II. u=p"[2 S si,+N(2 5.~> ,
i i=1

w=>2] [8u+NZ:)1—u,

=
where &=(Z;, %, - -+, Z,)-
Remark. We note that
p=max (p, p,) ,
) a, if p>p,

(o), if p=m,

where p and ¢* are the MLE of p and ¢* when p is unrestricted, and
*(p,) is the MLE of ¢* when it is known that p=p,.

g

2.3) A distributional representation for the MLE. We now make
use of the fact that if two random variables s, and s, are independently
distributed, each having a chi-square distribution, then s;+s; is inde-
pendent of s;/(s;+s;). Thus if we let

u w w U w
(2.16) =22, “7/(73“7)’

it follows that » and s are independent with 8~x+, and r~B<-;—vz,

—;—w), where (v, v,) is equal to (n,(p—1)n) in Case I, (n, (p—1)N) in

Case II and (N, (p—1)N) in Case III.

The above transformation permits us to represent p as a function of
r alone, and to represent ¢* as a function of » multiplied by a function
of s, so that we can take advantage of independence. Thus, we have

e (p—=1y(A—=r)—r
@10 =y e

where y=[1+(p—1)p]/(1—p)=06%/s}. Also,

2.1 F=g"—5_
(2.18) F=c k),
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where
A+@-Dpld—r)+1—p)yr, 0=rz2,
(2.19) )=y 1+(p—1)p 1—p
m(l r)+—5 "Por, i<r=l1,

and A=y(p—1)/[r(p—1)+7].

2.4) Remarks on expected values. Using (2.18), we have
Eé —aE<N )E[h(r)] 02”1+”2 E[h)],

Eot=t (“1+”2)1$’;;”2+ 2) Elhr)E .

By a direct computation we have

E[h(r)]=—22 kﬂ_[l_poL<V2+2,_li)]

vty 1—p, 2 2
1+(p—1)p[ vy (Vz Vl)
+ 1), 1,
14+ (=1 Ly +, ~(e=Dal 2 2
(p— 1)1’2P01<V2+2 Y :|
+ UI+V2 2 ’ 2>

for I(a, b)=[B(a, b)]™* Sl ¥*'(1—y)’~'dy. The computation of E[(r)} is
0

straightforward, though tedious, and results in a linear combination of
Y2 M vu+2 y v, 14 V1>
H(g5) 12525 %) sd L2 2.
Since p=p, and 2 is strictly increasing in p, it follows that 1>
(p—1)/p with equality if and only if p=p,. Furthermore, when 0> o,
then 2>(p—1)/p and

11mI<"'2+d ”1> 1,

N 2

for every finite number d>0. A more refined result (see Appendix) can
actually be obtained when p>p,, namely

2.20) 1—L(”—2g—d, E) <e/Ne " (1+O0(N-Y)

where, ¢, is a constant varying with d, and >0. It follows that

(2.21) E(r)]=1+(p—1)p—ppvs(v;+) ' +O(VNe ) .
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Hence

(2.22) EA2=0.2<1+ (Np—vl—vz)-};’;[(p—l)ul—-vg] ) +0(Ne"”) )

Turning now to the expected value of p, note that from (2.17),
p=p where

_ (p=Lyl—r)—r
.23 =
(@-23) = o—Dir+11—7]

is the unrestricted MLE of p. Thus

1
p—1

(@24)  EpsEp=Ep+EGp-p)SEp+ (ot — 1) Po=al,

-the furthest right-hand inequality following since p+#p only when p<p,
1

p_

A<r=1l. Consequently (2.20) and (2.24) imply that

<in which case p—p=p—p<p+ 1). Now p<p, if and only if

Ep<Ep<Ep+ <po+-p1—1>0(me'”") .
The result Ep=p+O(N™') can be directly computed from the represen-
tation (2.23) by use of the delta method. Therefore,
Ep=p+O(N).

2.5) Asymptotic distribution of the MLE. For p>p,, plim (p—p)=
, N

0. Indeed, the rate of convergence is very rapid as can be seen from
(2.20). The limiting distribution of p is known to be (c.f., Olkin and
Pratt [5]*)

lim (VN (5—p))=N(0, v.,) ,

where

v =20=pf1A+(@=1)p)*
p(p—1)

Hence, for p>p,,
(2.25) leim LW N(p—p))=N(O, v.) .

For p=p,, we still obtain asymptotic normality, but now the distribution
is censored, i.e.,

* This paper contains a misprint in the omission of the factor 2 in v. below.
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(2.26) lim (VN (5—p))=N*(0, v..) ,

where N*(0, v) represents the normal distribution censored at 0.
When p>p,, P{2<r<1} rapidly converges to 0 as N—oo. Thus

lim P{&zael%ﬂ} —lim Pa<r<1}=0.

N—ooo p N—ooo

It follows that

(2.27) lim 2(/N (3~ o) =lim 8<m ( “X;pw —az>>
=N(o, %‘j‘m(p—l)pﬁ) :

For p=p,, the representation (2.18) of &* in terms of s and r be-
comes

&= —ff—; max [1, 1+(p—1)p—ppor]= R(s)g(r) -
Now
11v1—1»2 VN (R(s)—%))=N(0, 2p~'a") ,
while

lim LV N(g(r)—1))=¥(max (0, 2)) ,

where z~N(0, p~(p—1)p;). Using the delta method, we conclude that
the asymptotic distribution of ¥/N(6°—¢*) as N— oo is the same as the
distribution of z*+¢* max (0, 2), where z* and z are independently distri-
buted, z~N(0, p~(p—1)p;), and z*~ N(0, 2p~'s*).

3. Tests of hypotheses for H . and H|,

mvce

3.1) Derivation of the likelihood ratio tests. We are interested in
testing H,.: (g, 2) € 25, and H.:(p, 2) € 2. against general alternatives
H:(y, 2)e 2, where 2 ={(g, X): p unrestricted, ¥>0}. To obtain likeli-
hood ratio tests for these hypotheses, we first obtain the supremum of
the likelihood function (2.5) over each of the regions 027, 27, and 2.
From (2.7), (2.12) and (2.13), we find that

D N/2
(3.1) sup p(y, V)= [N”e“”zT<'vu, pI (vu+y§)ﬂ

r
Qnve

(3.2) sup p(y, V)= [N"e_”/zT<’Uu; sz vii)]N/z
25 o=
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where

“_I<L)-@_D, if L T

p—1 b p-—-1

T(a,b)=1
(ﬁ”ﬂ>_prg—l, if S<_ 1
P b p-—1

Finally, it is well known that

Nev/2 exp{——;—pN}

(3.3) sup p(y, V)= Vi

We find the likelihood ratio test statistic 2, for testing H,. against gen-
eral alternatives by forming the ratio of (8.1) with (38.3). The result
can be expressed in the following form:

(3.4) 21 — vacXOImvc ’

where 1,,. is Wilks’ [7] likelihood ratio test statistic for testing H,..
against general alternatives, that is,

(3.5) 2 = V] ,
P
p3 (Vi + Y1) o1
(%H l:*—lﬁ }
p—1

and where A, is the likelihood ratio test of p>p, versus p=p, given
that H,, is true, i.e.,

1 , if Vi > To ,
3 —_
t=22 (vu+v) p—1
(3°6) Zg{lﬂv;vcz P p—-1
’Un[To 1_% ('Uii"}'yf)] i

(8

g (vi+vi) p

o
—1

IA

, if

Y4 ¥4
[’vu'i‘ro lzzg ('vit'i_y%)] (p_l)p—l

Similarly, we can obtain the likelihood ratio test statistics 2, for testing
H:, against general alternatives by dividing (3.2) by (3.3). We find that

(3.7) 12 =lvc20|vc ’

where 2,. is Wilks’ [7] likelihood ratio test statistic for testing H,, against
general alternatives, that is,
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(3.8) ev—_ VI

4

<_ zvii)p-l
vy =
" p—1

and where 4, is the likelihood ratio test statistic for testing p>p,
against p=p, given that H, is true, namely,

/ 1 , if :’4 >_To o
g Vis L
(3.9) A= » -1
Vi [To N vii] »°
p1.=2 > , if p’vu é To .
[?Ju‘l']’o iZ‘::Z 'vii] (p—1)" E Vii p—1

In terms of  and S, the likelihood ratio statistics can be computed by
first substituting the equivalences

1 » D » P_‘
Vu=Dp E jgl Sij» D1V =218;—Vy,
P LI U&= \?
Vi=ISI, Si=N3 G- N (23) |

into the formulas (8.5), (3.6), (3.8) and (3.9), and then using those re-
sults in formulas (3.4) and (3.7).

Remark. The likelihood ratio test statistic 1, of Hj, versus Hj,
may be of interest. This statistic can be obtained as the ratio of 2, to
2 ; that is, ;=2/4. From (3.4) and (3.7), we see that A;=2,2mochojscs
where 2, is Wilks’ [7] likelihood ratio test statistic for testing H,,. when
H,. is known to be true. The ratio Ajm.Asy is a complicated function
of the observations, and the null distribution of 2; is quite involved even
in the asymptotic case.

3.2) Asymptotic null distributions of the likelihood ratio test sta-
tistics. Since under H,, the triple <y1, Vi1, EP] (vu+y§)> constitutes a
i=2

complete and sufficient statistic for the parameter (¢, i, 03) (Herbach
[4]), and since the distribution of 2, is independent of (¢, ¢i, ¢7) while
the distribution of 2y, depends upon these parameters, the statistics ...
and ... are independent when H,, is true (Basu [1]). The distribu-
tion of A,, under H,, is known (viz., Tukey and Wilks [6]) to be a
product of independent Beta variables. Wilks [7] has shown that (un-
der H,.,.),

(3.10) }ll_{?fl.c Y(—210g o) = Xlp+8100-212 +
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The distribution of 2y, is more complicated; ... is equivalent to a
one sided F), y,_,, test based on

r

v > (vit+yi)
1 i=2

n [/ Np-1) °
When p>p,,

limP{ Yu >_T }:1 ,
N—ooo i 9 p—-l
izzz (ut+vi)

so that 2(—2log Am..) approaches to a distribution degenerate at 0.
Thus, for p>p,,

(3.11) }&2 Y—2log 2,) =11‘,1_{2 (—210g Anoe) =Xp+np-212 -

When p=p,,

lim P

N—ooo

{ Vu >_Io }___.l_
2 2 p—'l 2 ’
i_% (v +97)

and it can be shown that
0, with probability 1/2,

lim 8(._2 IOg lolmvc)__){
e x,  with probability 1/2.

Therefore, when p=gp,,

xgp+3)(11—2)/2 y With probability 1/2 s
8.12) lim &(—21log z,)ﬁ{
Voo xgp+3)(p—2)/2+l ’ With probability 1/2 .

Since the limiting law (3.12) is stochastically larger than the limiting
law (3.11), it is recommended that the rejection region is chosen with
reference to the limiting law (3.12). Indeed, under H,,, the distribution
of 2, has a monotone likelihood ratio in p, so that even in finite samples
the rejection region should be selected with reference to the distribution
of 2, when H,, holds and p=g,.

When p<p;, and H,,, holds,

limP{p A>T =0,
e 2 (v i) P

so that
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=il

(F +70)?

plim (—2 log Ay me.) =plim N log
N—oo N—oo

where F=uv, / ﬁ‘, (v +193). But %lim F=y/p—1, and consequently,
1=2 —00
plim (—2 log Aymp) =00 .
N—oo

From this result and (3.10),

plim (—21log 2;)=o0 .
Nooo

Similar results hold for 2,. Under H,, —2log 1, is the convolu-
tion of the independent test statistics —2log 4, and —2log 4,,.. The
distribution of 2,, under H, can be expressed as the product of inde-
pendent Beta variables, while 4, is equivalent to the one-sided F, ;-

test based on v, / ;‘_. v;; and has a monotone likelihood ratio in p. Con-
i=2

sequently, the rejection region of A, should be derived from the
distribution for 2, when H,, holds and p=p,. The asymptotic distribu-
tion of 2, when H;, holds and p>p, is

}vlﬂ L(—210g X)) =xhp-ns-2 »

whereas the limiting distribution of 2, when H;, holds and p=p, is
x;(p—l)ﬂ—z y With probability 1/2 y
lim €(—2log 2,)=
Noe Aocp—1D/2-1 » with probability 1/2.
When H,, holds and p<p,,

plim (—2log 2)) =00 .
N-ooo

Appendix

4. An inequality for the incomplete Beta function
In this appendix we prove the following inequality.

THEOREM. If a;=2, a;=az+b, a>0, and if p<1l/(a+1), then as

Z— 00,

B
So y (A —y) Ty

( i) Iﬂ(an )= B(al, @)

=Cvze(1+0(z™) ,
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for some =>0.

PROOF. The maximum of y='(1—y)*"~» is achieved for y=1/(a+1).
Further, this function is increasing for y<1/(a+1), so that for 0=y<
B<1/(a+1),

yal—l(l__,y)a(al—l)élsul—l(l_ﬁ)a(cl—-l) .

Consequently,

@ yea-grdes|( a-gpedy|eoa-pre.

Furthermore, from the well-known Stirling Expansion of the Gamma
function,

e—(al+a2)a1a1-I/Zazaz—l/z

_T(a)(e) _
(D Bl )= Fa) T ety

=2 (a +az)‘m< a, >nl-1/z ( a >a2-1/2[1+0(z_1)]

atay at+ay

)"”'z_m< aJlrl >=<ai1>uu+o(z_l)] '

[1+0(z™]

= 27re'°< a
a+1

Taking the ratio of (ii) to (iii), we obtain

Alle+1)Bllaa+1)A—BIF1+0(=™] .

But since f<1/(a+1), the arithmetic-geometric mean inequality tells us
that

[(@+1)]Y=* [aYa+1) (1 — B <1 .
Thus we can write

[e+1)glle(a+1)A—p)l*=e"",
for some z>0. This completes the proof.
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