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1. Introduction and summary

The significance levels of various tests for a general ¢Xxk contin-
gency table are usually given by large sample theory. But they are not
accurate for the one having small frequencies. In this paper, a numer-
ical evaluation was made to determine how good the approximation of
significance level is for various improved tests that have been developed
by Nass [6], Yoshimura [9], Gart [2] etc. for ¢Xxk contingency table
with small frequencies in some of cells. For this purpose we compared
the significance levels of the various approximate methods (i) with those
of one-sided tail defined in terms of exact probabilities for given mar-
ginals in 2X2 table; (ii) with those of exact probabilities accumulated in
the order of magnitude of y* statistic or likelihood ratio (=LR) statistic
in 2x3 table mentioned by Yates [8]. In 2Xx2 table it is well known
that Yates’ correction gives satisfactory result for small cell frequencies
and the other methods that we have not referred here, can be consider-
ed if we devote our attention only to 2X2 or 2xk table. But we are
mainly interested in comparing the methods that are applicable to a gen-
eral ¢xXk table. It appears that such a comparison for the various im-
proved methods in the same example has not been made explicitly, even
though these tests are frequently used in biological and medical research.

Our numerical experience shows the following facts. The approxi-
mate significance levels due to Gart [2] and the modified Dandekar’s
method are somewhat better than the others for 2x2 tables, though
they are somewhat too small for exact levels in the range one to five
percent. The method of Gart [2] is conservative for 2x3 tables, but
the others are not always conservative. The corrected LR statistic by
Yoshimura [9] is always a little better than the LR statistic. However,
the approximate significance level of the LR statistic was always smaller
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than the others except for tables having comparatively large marginals.
The other methods that we investigated give almost the same results as
the standard y* test. The method of Nass [6] proved not to give as good
an approximation as he conjectured.

The following notation of observed frequencies for a ¢Xxk contin-
gency table is used throughout this paper.

Xll! X.m ] -Xlk Xl-

---------------

2. Description of methods with numerical comparisons in Rao's ex-
ample

Rao ([7], p. 202) considered the following 22 table, testing whether
the city soldiers are more sociable than village soldiers. In this example,

Sociable Nonsociable Total
City soldiers 13 4 17
Village soldiers 6 14 20
Total 19 18 37

he compared the various improved techniques for small frequencies with
the exact method, that is, the one sided tail probability (X;,;=0~4) for
fixed marginals is given by equation (1) and the approximate significance
levels of the other methods described by him are shown in (2)~(5).

(1) exact probability=0.0059

(2) o test, P(3*>7.9435)/2=0.0024

(3) Yates’ correction, P(x*>6.1922)/2=0.0064

(4) LR test, P(—2log 2>8.2811)/2=0.0020

(5) Dandekar’s correction, P(x*>6.1086)/2=0.0068.

These results show that y* method (2) and LR method (4) do not give
satisfactory approximation and that Yates’ correction (3) and Dandekar’s
correction (5) are fairly good. But Yates’ correction as well as Dan-
dekar’s cannot be extended to a general ¢xk table. We shall investi-
gate some other techniques applicable to ¢xk tables and giving better
approximations in this example.

(6) Corrected LR statistic. Yoshimura [9] calculated the correc-
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tion factor K for the LR statistic, —2log 4, such that the first and the

second conditional moments for given marginals of the statistic, —2K log 2,

are equal to those of the yx{_ .-, distribution up to the order of 1/N,

that is,

[ k c

—2K log 2= —ZK[Z > X, log X,,—iZ‘ X, log X,.
= =1

i=1 j=1

—é X.;log X.;4+Nlog N}

Jj=1

where
K=1—[6N(c—1)(k—1)]"<N 5 X;‘—l) (Nji‘, X.;1—1> :

Then he proposed using the statistic —2K log 4, which is approximately
distributed according to the yf_-; distribution. In Rao’s example,
K=0.95906 and P(—2Klog 2>7.9421)/2=0.0024. The accuracy of this
correction gives the same significance level as that of the y* method (2),
though it is a little better than the LR method (4).

(7) Correction of y* statistic. We shall determine the correction
factors a and b such that the first and the second conditional moments of
the statistic ax’®+b are equal to those of yx{._i-1, distribution. The con-
ditional moments of the 4 statistic are given by Haldane [4].

E=E[¢}|X., X,]=N(N—-1)"(c—1)(k—1),

E,=E[¢| X, X;]=N}(N-1)(N—-2)(N-3)]!
‘(A+ANT'+A,N7),

Ay=(c—1)(k—1)'+2(c—1)(k-1),
A= —A4(c—1Y(k— 1)+t + 20k — 2 — (K*+ 2k —2)N E’ X

k c k
—(+2—2) N X.;‘+N2<5‘_. X;l) (z X.;‘) ,
j=1 i=1 j=1
Ay=ch(c—2) (k—2)+k(k—2)N § X' 4o(c—2)N jﬁ X5
c k
LA <§ X;‘) (EX‘?) .

Then we get a=[2(c—1)(k—1)/(E;—E}]'"* and b=(c—1)(k—1)—akE), re-
garding the statistic ay’+b as a yf{-a-1, variate. In Rao’s example, a
=0.9864, b=0.01382 and P(ay’+b>7.8218)/2=0.0026. This correction is
slightly better than the y* method (2), though it is not satisfactory to
us.

(8) Method by Nass I. Nass [6] proposes to use the test statistic
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ay* as a y? variate, where the quantities @ and f are determined such
that the first and the second conditional moments of the statistic ay’
are equal to those of the y! distribution, that is, a=2E,/2E;—E}), f=
oE, where E,, E, are given by (7). This method differs from the others
in that the test statistic has a y? distribution with non-integer number
of degrees of freedom. In order to get the tail probability for the 3}
distribution, we made use of the Chebyshev series expansions for gamma
functions mentioned by Clenshaw [1] and the continued fraction expan-
sion

x‘“e'swe"x““dx= 1 1-¢ 1 2—a 2 3—a  n—1mn—a
z r+ 1+ =+ 1+ 2+ 1+ z+ 1+

for 0<a<1, which is discussed by Gupta and Waknis [3]. In Rao’s ex-

ample, a=1.0000, f=1.0278 and P(ax}>7.9439)/2=0.0025. This result is
almost the same as that for the y* method (2) and method (7).

(9) Method by Nass II. Nass [6] conjectured that his method (8)
would be improved, if he could use the test statistic, ay’*+b, as if it
were distributed according to the y? distribution, where the parameters
a, b and f are determined such that the first three conditional moments
of ay’+b are equal to those of the y} distribution. In a 2xk table we
can check this conjecture by using the third moment given by Haldane
[5]. We shall write it after some rearrangement.

By=E[¢| X.., X. 1= NU(N—1)(N=2)- - -(N—5)]"
Ate-DE+3+3 eN-l,

0,=2(30 + 69k — 43) —2(9k +4T)N ;v; X7

+N2(X,.X,.)-l{ 31— 21K — 24k + 26+ (3k+19)N jé X.;l} ,

0,=120(3% —1)— 360N ji X7'+120N* ,él X7
+N’(X,.X}.)"{5k’-—57k2—266k+120+3(9k+67)N jz"', X3
—30N? é‘; X.;’}
—N‘(Xl.Xz.)"{ — 20k + 90 + 14k —12) + (3k+ 22)N jz" X3

—N’éX.}’},
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c3=N2(Xl.X2.)-I{ 60k(k—2)—30(k —6)N jﬁ X3'—90N? % X.;z}
—N4(Xl.)g.)-2{6k(k—2) (k+5)+2(3k+23)N 15":‘ X5t
—16N? ,Zl X.;“} ,
= —N‘(XI.XZ.)"{4k(k’—4)—(21k—20)N jé X3 —11N? jﬁ; X.;”} ,

o= —4N‘(X,.X2.)‘2{(3k—4)N jﬁ X314+ jﬁ‘, X.;’} .
=1 =1

By using the moments E, together with E,, E, given by (7), we can
determine the three parameters as a=4my/m;, b=4m,2mi—mms)/m?,
f=8mj}/m}, where m,=E,, m,=E,—E} and my=E,—3E,E,+2E!. In
Rao’s example, a=1.0287, b=0.03034, f=1.0877 and P(ax’+b>8.2022)/2
=0.0024. The result of this correction is again the same as that of the
x* method (2) and methods (6)~(8). This approximation method con-
jectured by Nass does not seem to be satisfactory too.

(10) Method by Gart I. Gart [2] derived the modified LR statistic
M/d, as a y* variate with (¢c—1)(k—1) degrees of freedom from an in-
teresting viewpoint of regarding the data value X;; as parameters and
cell probabilities as random variables based on the equality connecting
the multinomial distribution with the multivariate Beta distribution.

¢ k 4
g > (2X,;+41) log (ZX“_H)—E (2X..+k)log X, +k)

17=1
— 33 (2X,+0) log (2X.,+ )+ (2N + k) log (2N + k),

1 & 1 d 1
=1 —
+ 3(c—1)(k—1) @E, 2X,+1 E, 2X,.+k
é 1 n 1 }
i=1 2X;4+¢  2N+ck

We shall remark that this correction factor d contains random variables
X,;, which distinguishes this method from others. In Rao’s example,
M=17.8096, d=1.0565 and P(M/d>"7.8920)/2=0.0033. This result is some-
what better than the previous ones.

(11) Method by Gart II. Gart [2] also proposed to use the more
accurate correction factor d’ instead of d in the method (10).

, 1 c k 1 1 -1

= (c—1)(k—1) Lg = { 3(2X,,+1) + 8(2X,,+1)2}
B - e
3(2X,.+k) ' 82X, +k)
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—% {1

Jj=1

1 .1 }-1
32X, +c) 82X, tcf

+ {1 B 3(2N1+ ck) + 8(2N1+ ck)’ } ) ] :

In Rao’s example, d’=1.0562 and P(M/d’'>7.3944)/2=0.0033. The result
of this correction is the same as that of the method (10). The differ-
ences between methods (10) and (11) will be seen in another example
later.

(12) Modified Dandekar’s method. Dandekar’s correction mentioned
in Rao ([7], p. 203) cannot be extended to a general ¢xk table. This
is because for given marginals we cannot uniquely increase or decrease
the observed frequency by 1 according as the minimum observed fre-
quency is decreased or increased by 1. We shall consider the following
modification suggested by Mr. Ueda. Let the minimum number of all
the cell frequencies be attained by the (i, ), - - -, (4, 5,) cells. Then we
calculate the y* statistic for the table having the modified frequency
X!, where X/, =X,,+1"', X/ =X,.+(number of i, ---,1, equal to r)xl,
X/,=X,+(number of j,, - - -, j, equel to s) X1 for (r, 8)=(1,51) -+, (%1, J0),
X!,=X,, for other cells and N'=N+1. We shall define this value as
¥%:. The modified Dandekar’s method is to use the statistic yi=x—
[ —12) O i—)/(—x21) | as a y* variate with (c—1)(k—1) degrees of
freedom, where y: means the value of y* statistic for the observed fre-
quency X;,. Here we must note that the inequalities ¥},>xi>x%, are
not necessarily hold. In fact, for X,;=9~12 in figure 4 we have ¢};<
v<yt:. In Rao’s example, x2=7.9435, »%,=9.3678, x>,=6.75566 and
P(x>17.2958)/2=0.0035. This result is slightly better than Gart’s methods
(10) and (11).

3. Comparison in some 2X2 and 2X3 tables

In the previous section we have checked the accuracy for the vari-
ous approximation methods in Rao’s example only. We shall first in-
vestigate the effects of these corrections for X;,;=0~7 or X;=0~8
(accumulated in opposite direction) in the same example, whose results
are shown in figures 1 and 2. Then we also examine in case of other
tables as follows:

(i) Rao’s example (Figures 1 and 2)

Xy X |17
Xu Xn|20

19 18 |37 ,
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(ii) 2X2 symmetric case (Figure 3)

Xy X |20
Xo Xi | 20
20 20 |40 ,

(iii) 2x2 table with large marginals (Figure 4)

Xil X 12
X-Zl XZZ

133 440

(iv) 2x3 table by Yates ([8], p. 233)

18
555

573 ,

(Figures 5 and 6)

511

Xy X Xy |17
X Xn Xn |13
13 11 6 |30

Figures 1 and 2 show the following facts. Gart (10), (11) and modified
Dandekar (12) give fairly better results and the LR method (4) always
gives the smallest values. Yoshimura (6) is uniformly better than (4).
The methods (7)~(9) are almost the same as the y* method (2). We
must note in figure 3 that the value obtained by Gart (10) for X,=0
is larger than for X;,=1. This fact seems to be a weak point of method
(10). Gart (11) is preferable to Gart (10) in the presence of zero fre-
quencies for some cells; otherwise they are nearly equal. Figure 4 shows
that the LR method (4) and Yoshimura (6) are better and they are al-
most equal to Gart (10) and (11). In this case, the y* method (2) as
well as modified Dandekar’s method (12) do not give good approxima-
tions. In figures 5 and 6, the methods (2) and (7)~(9) give almost the
same results as in the previous figures, but they are close to exact
method (1). Gart (10) and (11) are conservative, but modified Dandekar
(12) is not.
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log WP

Fig. 1.

Exact (1)
—_——— 2 (2)
Yates (3)
—--m-m=-=— —21ogd (4)
________ 2Klogd (6)
—o—o—aX24+b (7)
——a——a— Nass I (3)
x—— Nass II (9)
—a—a— Gart I (10)

——e——— Gart II (11)

Modified
Dandekar (12)

x

— 8 e

One sided tail probabilities for X13=0~8 in Rao’s example.
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Exact (1)
————— o (2)

Yates (3)
---------- —2logA (4)
—_— 2KlogA (6)
oo a2 b (7)
——a—a— Nass I (8)

——x—~x—— Nass II (9)
——a—a— Gart I (10)

——e—e—— Gart II (11)
Modified

/ ~ "7 Dandekar (12)
/
_.11 -
—12}
0 1 2| 3 4 5 6 7 8

Fig. 2. One sided tail probabilities for X;;=0~8 in Rao’s example,
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Exact (1)
—_——r (2)

R
®
2 6 Yates (3)
----------- —2log (4)
—-—-———2Klogd (6)

o—aX?+b (7)

-—0

—a—a—Nass I (8)

x—Nass II (9)

—_—
—a—as—Gart I (10)

o— Gart II (11)
Modified (12)

*" Dandekar

|
—t
Ll
==
=

~
o
-3
~
®
©

Fig. 3. One sided tail probabilities for X13=0~9 in symmetric case.
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—1F //
_2—
=3r
__4—
sl Exact (1)
S N/ 17 / 2 Xz (2)
g 5 Yates (3)
__________ —2loga (4)
—-—-——2Klogi (6)
—o—o—aX:+b (7)

—a—a—Nass I (8)
——x——x— Nass I (9)
——a—a—Gart I (10)

——e¢——e—Gart II (11)

Modified
Dandekar (12)

— et

Fig. 4. One sided tail probabilities for X13=0~12 with large marginals.
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Exact (1)
—_—2 (2)
---------- —2loga (4)
NS ——— 2Klogd (6)
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—3k

—
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——ee——2e*~— Dandekar (12)
1 1 1 I 1

6 3 6 5 8 7 9
6 4 1 6 1 1 2

1 1 L 1
7 8 10
0 0 1 3

[y

X,
X

1;

2
5

Do

5 3 3 4
16 3 2

—co|

9
4

18 3
6 5 5

by the magnitude of y? statistic.

=
o o

—
®w g

Fig. 5. Tail probabilities in 2x3 table accumulate
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——a—s—Nass I (8)

——x——x——Nass II (9)

—a——as—=@Gart I (10)

——e—e—@Gart II (11)
Modified

e -Dandekar (l?)

3 3 6 8 7 9

5 4 1 1 1 2

710 10
6 3 2
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et

T 3 6
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oG-

1
2

o
o
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1

Fig. 6. Tail probabilities in 2x3 tables accumulated by the magnitude of LR statistics.



