# ON THE RATE OF CONVERGENCE OF THE RANGE OF CUMULATIVE SUMS\*

#### V. K. ROHATGI

(Received Dec. 20, 1967)

## 1. Introduction and summary

Let  $\{X_n, n \ge 1\}$  be a sequence of independent random variables, and write  $S_n = \sum_{k=1}^n X_k$ . The range of cumulative sums,  $\max{(0, S_1, \dots, S_n)} - \min{(0, S_1, \dots, S_n)}$  has been the subject of considerable research in the literature (see, for example, [3], [5] where further details and references may also be found). In what follows the random variables  $X_1, X_2, \dots$  are assumed to be independent and identically distributed with common law  $\mathfrak{L}(X)$ . We write  $M_n = \max_{1 \le k \le n} S_k$ ,  $m_n = \min_{1 \le k \le n} S_k$  and call  $R_n = M_n - m_n$ , the range of cumulative sums  $S_n$ . Take 0 < r < 2 and write  $F(x) = P(X \le x)$ . Our purpose here is to prove an analogue of the Kolmogorov-Marcinkiewicz law of large numbers ([4], pp. 242-243) for the range  $R_n$  (Theorem 1) and obtain necessary and sufficient conditions, in terms of the order of magnitude of  $P(|X| > n^{1/r})$ , for the sequence  $\{P(R_n > n^{1/r}\varepsilon), n \ge 1\}$  to converge to zero for arbitrary  $\varepsilon > 0$  at specified rates (Theorem 2).

### 2. Results

THEOREM 1. Let  $E \mid X_i \mid^r < \infty$  with 0 < r < 2 and write  $EX_i = \mu$  whenever  $E \mid X_i \mid < \infty$ . Then,

$$n^{-1/r}(R_n - nC_r) \xrightarrow{\text{a. s.}} 0$$

where  $C_r = 0$  if 0 < r < 1, and  $C_r = |\mu|$  if  $1 \le r < 2$ .

Remarks. Kolmogorov and Marcinkiewicz (see for example [4], pp. 242-243) obtained the corresponding almost sure convergence versions for the sums  $S_n$  and Heyde [1] obtained the corresponding version for the maxima  $M_n$ .

PROOF. For the proof we note that

<sup>\*</sup> Research supported by the ONR under contract No. Nonr 2587(05).

$$m_n = \min_{1 \le k \le n} S_k = -\{\max_{1 \le k \le n} (-S_k)\}.$$

The proof is now completed by applying Lemma 1 of Heyde [1] repeatedly to both  $M_n$  and  $m_n$ .

Let  $L(\cdot)$  be a non-negative, non-decreasing and continuous function of slow variation. We then have the following theorem.

THEOREM 2. If  $t \ge 0$ , then

a) 
$$n^t L(n)P(R_n > n^{1/r}\varepsilon) \to 0$$
 for all  $\varepsilon > 0$  if and only if 
$$n^{t+1}L(n)P(|X| > n^{1/r}) \to 0 \text{ and } n^{1-1/r} \int_{|x| < n^{1/r}} x dF(x) \to 0,$$

b) 
$$\sum_{n=1}^{\infty} n^{t-1}L(n)P(R_n > n^{1/r}\varepsilon) < \infty$$
 for all  $\varepsilon > 0$  if and only if  $\sum_{n=1}^{\infty} n^tL(n)P(|X| > n^{1/r}) < \infty$  and  $n^{1-1/r} \int_{|x| < n^{1/r}} xdF(x) \to 0$ .

Remarks. It is necessary to have the complementary forms of a) and b). For examples and other relevant remarks we refer to [2].

PROOF. The proof relies heavily on the results of [2] and [6]. For the sufficiency part of both a) and b) we note that

$$R_n = M_n - \{ -\max_{1 \le k \le n} (-S_k) \}$$

$$\leq 2 \max_{1 \le k \le n} |S_k|,$$

and it follows that

$$P(R_n > n^{1/r}\varepsilon) \leq P\left(\max_{1 \leq k \leq n} |S_k| > n^{1/r} \frac{\varepsilon}{2}\right).$$

A simple application of Theorems 3 and 4 of [6] and Theorems 1 and 2 of [2] now shows that the conditions in both a) and b) are sufficient.

As for the necessity part of both a) and b), we observe that

$$R_n \ge S_n - m_n$$

$$= S_n + \max_{1 \le k \le n} (-S_k)$$

$$\ge \sum_{k=2}^n X_k,$$

and

$$R_n \ge X_1 - m_n$$

$$= X_1 + \max_{1 \le k \le n} (-S_k)$$

$$\ge -\sum_{k=1}^n X_k.$$

Since  $X_1, X_2, \dots, X_n$  are identically distributed it follows that

$$2P(R_n > n^{1/r}\varepsilon) \leq P(|S_{n-1}| > n^{1/r}\varepsilon)$$
.

We once again appeal to Theorems 1 and 2 of [2] to complete the proof.

## 3. Acknowledgement

The author is deeply indebted to Dr. C. C. Heyde for his valuable assistance.

THE CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C.

#### REFERENCES

- C. C. Heyde, "Some renewal theorems with application to a first passage problem," *Ann. Math. Statist.*, 37 (1966), 699-710.
- [2] C. C. Heyde and V. K. Rohatgi, "A pair of complementary theorems on convergence rates in the law of large numbers," Proc. Camb. Phil. Soc., 63 (1967), 73-82.
- [3] W. Feller, "The asymptotic distribution of the range of sums of random variables," Ann. Math. Statist., 22 (1951), 427-432.
- [4] M. Loève, Probability Theory, 3rd edition, Van Nostrand, New York, 1963.
- [5] P. A. P. Moran, "On the range of cumulative sums," Ann. Inst. Statist. Math., 16 (1964), 109-112.
- [6] V. K. Rohatgi, "Convergence rates in the law of large numbers II," Proc. Camb. Phil. Soc., 64 (1968), 485-488.