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Summary

A basic linear model of stationary stochastic processes is proposed
for the analysis of linear feedback systems. The model suggests a
simple computational procedure which gives estimates of the response
characteristics of the system and the spectra of the noise source. These
estimates are obtained through the estimate of the linear predictor of the
process, which is obtained by the ordinary least squares method.

The necessary assumption for the validity of the estimation proce-
dure is so general that the procedure can be applied to the analysis of
wide variety of practical systems with feedback.

The content of the present paper forms an answer to the problem
discussed by the author in a former paper [1].

1. Introduction

The cross-spectral method has been extensively applied to the esti-
mation of frequency response functions [2], [3], [8]. The discrete time
parameter model which forms the basis of the cross-spectral method of
estimation is of the form

wo(n)=g ga,m x,(n—m)+udn),

where the unobservable noise uy(n) is assumed to be uncorrelated with,

or orthogonal to, the input series z,n) (j=1,2, .-, K). This last
assumption is essential for the validity of ordinary cross-spectral ap-
proach [11].

In many important practical situations, the existence of feedback
loops which connect the output z,(n) to the inputs x;(n)’s is quite com-
mon and the present assumption of orthogonality of wuyn) to z;(n)’s
seriously limits the practical applicability of the method. As was brief-
ly touched in the former paper [1] this difficulty may be due to our
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inability of including the condition of physical realizability, which re-
quires the output of a system to be determined without using the
future values of the input, into the cross-spectral method.

In the present paper we treat the problem in the time domain and
directly get estimates of the impulse response functions {a,,: m=0, 1,

.-} (4=1,2, ---, K). The estimation procedure can be explained as
follows: we first conceptually whiten the spectrum of the additive dis-
turbance w,(n), or actually a driving input to the system, by a physi-
cally realizable linear transformation and then apply the least squares
method to get an estimate of the regression coefficients of the linear
predictor of the process and finally back-transform the estimated pre-
dictor into the original form of the system structure. The only practi-
cal condition to assure the validity of the estimation procedure is that,
besides the existence of necessary driving input for each z,(n) such as
uy(n) for zy(n), there should be some delays in the feedback loops so
that we can effectively assume that an instantaneous return from the
output to itself through the feedback loops is prohibited. When we are
observing a physical process, this condition will be satisfied at least
approximately if we limit our attention to some frequency band.

In the next section we shall give a precise description of the basic
model and in the following section we propose an estimation procedure.
The procedure is directly applicable to practical data and the consisten-
cy of the estimates is discussed. Some numerical examples are given
to show the practical applicability of the procedure. Possible bias due
to the incorrect specification of the model is discussed in the last section.

2. Basic model

Here we consider a set of observation points {¢; =0, 1,2, ---, K}.
The model of the system we are going to treat in this paper is given
by the relation

K M
x(m)= Z= mE= Ayjm T j(M—m)+u(n)
=0,1,2,..., K, n=0,1,2, ...,

where {u,n); n=0, 1, 2, ---} is the driving input at 4 and {wx,(n); i=0,
1, ---, K, n=0,1, ---} is the response of the system and the initial
condition of the system is given by {z,(n); i=0,1, ..+, K, n=—1, —2,

, —M}. {aijm; m=0,1, ---, M} is the impulse response of the out-
put z,n) to the input x,(n) and we shall assume

a’timzo 'i=0) 11"'9 Ky m'-:O, 1, 27"'; M.

This assumption is a salient feature of our model and if there is a
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feedback loop from 4 to ¢ without going through other j’s its effect is
included into all of the responses {a,;.} and also the noise within the
loop is included into w,(n). This fact should be taken into account
when we analyze the result of application of our model to a practical
problem.

In the following, we shall denote by |G| the determinant of a matrix
G and by (G);; the (i, j) element of G and by I, the n-dimensional
identity matrix. We define

M
AR)= 3 Anz",

where z is a complex scalar variable and A, is a (K+1)-dimensional
matrix with (4,);;=a;;». We shall assume that the absolute values of
the roots of characteristic equation |I;,,—A(2)|=0 are all greater than
1. Under this assumption, B(z)=(Ix:;—A(2))"' has a Taylor expansion

B(z)= i‘. B, 2" with radius of convergence greater than 1. Thus if we
m=0

put b,;,=(B.);; we have f‘;. |bjm| <oo for every (i, j). From the rela-
m=0
tion (Ix+1—A(2)) B(z)=1Ix.1, we have
(Ig+1—Ao) B(2)— A'(2) B(2)=I.1,

where A'(z)= % A,z". Thus we get
m=1
(Ix+1—Ao) By=1Ig,,,
(Ixi—A) Ba= 3 A By,

where it is assumed that A,=0 (null matrix) for £>M. This result
shows that b,,, is the response of the system at ¢+ at time m when a
unit impulse {u,(n)} with %,0)=1 and u;,(n)=0 (n+0) is applied at j
and other u,(n)’s are all kept equal to zero. We have noticed that

under our assumption f} |b;jm| <oo holds for every pair (¢, 5). Thus we
m=0

can see that our system is absolutely stable in the sense that starting
from arbitrary initial condition the response of the system eventually
damps out if it is without driving input. It can be shown that our
assumption on the absolute values of the characteristic equation |I..,—
A(2)|=0 is just equivalent to this absolute stability of the system. It
also should be noticed that the assumption implies |Ix.,— A4, 0.

Now we turn our attention to the stochastic situation where {u(n);
©=0,1,.--, K; n=0, +1, +2, ...} is a (K+1)-dimensional stationary
process with zero mean vector and finite second order moments. We
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assume {u,n)} (¢=0,1, ---, K) to be mutually uncorrelated, or orthogo-
nal, and that each u,(n) is a regular process in the sense that it admits

a one-sided moving average representation wu;(n)= i}bi, e(n—1) with a
=0

white noise ¢;(n) satisfying FEe,(n)=0, Ee(n)=q¢? (>0) and Ee(n)e(m)=
0 (n#m). Hereafter the convergence and equality of random quantities
are to be understood in the sense of mean square. We shall assume
by=1(¢=0,1, ---, K). To assume the regularity of u,(n) is just equiva-
lent to assuming the influence of its infinitely remote past history to
be vanishing in u,(n) in the sense of mean square. Thus the regularity
assumption is a natural one for various practical situations. Now

lib,, e(n—1) is the projection of wu,n) into the space spanned by its
=1

own past history and ¢(n) is the innovation. Thus ibu e{n—1) can be
=1

approximated arbitrarily closely in the sense of mean square by a finite
linear combination of u,(n—m) (m=1,2, ---). Thus, as a simplification,
we assume that for some finite L u,(n) satisfies the relation

(4) wlm)= e uln—1)+efn)

As we have assumed the orthogonality between {u,n)}’s, it holds that
Ee(m)e;(m)=0 (t+7). Here we define z,(n) by

K o
xz(n)= Eo %‘,ﬂbim u;(m—m) .
Then it can be seen that {x,n); 1=0, 1, --., K} satisfies the relation

K M
xz,(n)= ,E > A T (n—m)+un) .

=0 m=0
Now let us assume that {zn); 1=0, 1, -.., K} satisfies the same rela-
tion as {x,m); 1=0, 1, --., K} and is stationarily correlated with {u.,(n)}

or with {x,n)}. Then y.(n)=x,(n)—z(n) satisfies the relation

K M
yi(n)=2 Ea”m’yj('n—m) 'l::O, .., K.

J=0 m=0

From this it follows that

[ exp(v=12nfm)(Tc.i— Alexp (—v=122£)) dF,(f)=0
m=0, +1, +£2, --. |,
where F,(f) is the matrix spectral function of {y,(n); 7=0, 1, ---, K} and
is defined by the relation Ey,(n+m)y,(n)= Sl_/; exp (v =12zfm)d(F(f)).,
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and O is the (K+41)x(K+1) null matrix. Thus we get, formally,
(Ix+1—A(exp (— v/ —122f))) dF(f)=0,
and by multiplying B(exp (—4/—12xf)) from left we get

dF,(f)=0.
This shows that under our assumption of the absolute stability of the
system, above relation between {z,(n);1=0,1, ---, K} and {u,(n); t=0,
1, .-+, K} uniquely determines {,n)} in the sense of mean square.

Thus, as our basic model we adopt

(B) ()= i S Gy 2, — M)+ ()

J=0 m=0

=0, 1 K, n=0, il,iz, e

It should be remembered that we are assuming a;,=0 and not assum-
ing u/n) to be a white noise.

Now by using the relation (A), we can transform the original re-
presentation (B) to whiten u,(n) and get

(©) z(n)= Z} Ay, (n—m)+e(n)
where
Aup=0
Asim=Cim for m=1,2, ..., L,
Ajjp=0ay
Aiyn=0m— gca Qiym—i for m=1,2,--., M+L,

and it is assumed that c¢;=0 for I[>L and a,,=0 for m>M. Con-
versely {a,;»} and {e.,} can be obtained from {A,;,,} by the relation

Cim=Ain for m=1,2, ..., L,
a’ijo———A(jO

m
Qism=Aijm+ lZ}_lcu Qijm—1 for m=1,2,..--, M,

where we are assuming c¢;=0 for [>L.

Our present representation (C) corresponds to the so called reduced
form of mutually related multiple time series when A,,y=a,;,,=0 for all
(¢, 7) and in this case we can readily apply the method of least squares
to get an estimate of {A,;,} [5]. In physical processes with continuous
time parameter, there are usually lags in the responses and if we limit



430 HIROTUGU AKAIKE

our attention to some frequency band and select the length of sampling
interval between consecutive observations short enough, we shall gener-
ally be able to expect this condition to hold for the equi-spaced time-
sampled data. But using a too short time interval usually introduces
inefficiency of estimation procedure and sometimes it is not quite prac-
tical to ask all the A,;’s to be vanishing. What we need here for the
validity of the least squares method is that the values of z,(n) with
Ai7#0 should be (practically at least approximately) uncorrelated with
e(n).

From this, we can see that for our requirement to be filled it is
necessary and sufficient that

(A0)ij((Tx+1— A)™) ;=0 for 1, 5=0,1, ..., K.

If we are going to approximate a physical process with continuous time
parameter by our present model, A, will represent the effect of quick
responses of the system and A? will have to approximate the effect of
quick responses traveling through n observation points during a unit of
sampling interval. In this case, we shall have to select the sampling
interval short enough so that at least we can expect that every possible
quick response of 7 to % is effectively negligible during the unit of
sampling interval. Otherwise, we shall generally never be able to ex-
pect the orthogonality of ¢(n) to all of z,(n)’s with a,;,#0. Thus we
assume

(A}),=0 for ¢=0,1,.--, K and n=1,2,---.

This condition is satisfied if and only if, after proper rearrangement of
the vector components of {xy(n), - -, xx(n)} or relabelling of the obser-
vation points, A, has zeros on and below the diagonal, i.e., it takes the
form :

% —

*
*
*

-0
0
0 0 0-.-% *

*

(==}
*

00 0---0 *
_0 0 0---0 0_
It can be seen that (A,).;((Zx:1—Ay)7");;=0 holds for this type of A,.

We shall hereafter assume this shape of A,. Taking into account the
relation A;;,=a;;,, we can see that in this case (C) takes the form

K K M+L
(D) x(n)= ,§+1A"° z,(n)+ Eo El Aipm®(n—m)+e,(n)
©=0,1, ..., K.
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This corresponds to the so-called primary form of a linear causal chain
system which has been extensively discussed by Wold [11], [12] in the
field of econometric model building. It is fairly clear from our obser-
vation that our model with present assumption will be useful for the
analysis of various physical processes. The assumed shape of A, means
that, roughly speaking, we are arranging z,(n)’s in the order of the
speeds of their responses; starting from x,(n), the quickest one, to zx(n), '
the slowest one.

Obviously our present model is only a crude approximation for a
physical process with continuous time parameter and if there exist any
ambiguities of the values of estimates of a,;, obtained by applying the
model to equi-spaced time-sampled data we should try another analysis
using a sample with twice as much frequency of sampling as of the
original one and assuming a,,=0. Theoretical discussion of the appro-
ximation of continuous time parameter process by one with discrete
time parameter would be important but is beyond the scope of the
present paper.

For the proof of consistency of the least squares estimate of the
coefficients of (D), we have to show the non-singularity of the variance
covariance matrix of the regressor {x,n) (j=1+1, -+, K), x,(n—m)
(j=0,1, .-+, K; m=1,2,.--, H)} for any finite positive integer H.
For this we have to notice that

(Ign—A)'=Ixn+ A+ A+ - AT

and thus (Ig,,—Ag)™" has all zeros below the diagonal and 1’s on the
diagonal. The multi-dimensional prediction formula of w(n) is then
given by

2 =3 "3] 33 (I~ A) s Aeya 7 n—m)+3,(n)

where
3(m)= 3 (- A) D em=em) + 33 (= A)ucxlm)

As we have assumed Ee¥(n)=0!>0 and ¢(n)’s are mutually orthogonal,

the variance covariance matrix of d,(n) (¢=0, 1, ---, K) is non-singular.
For any set of coefficients {B,,} (m=0,1, ---, H) we have
K H 2 K 2
B3 3B m,(n—m)[ =ELE=0 By, 5,(n)l

+E‘linear combination of z,(n—m) (m=1,2,---,H) i ,

and for this quantity to be vanishing we have to ask B,=0 (=0, 1,
..., K) and accordingly B,,=0 for all j and m. Thus, we have shown
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the non-singularity of the variance covariance matrix of {z;,(n) (j=1+1,
.-+, K), z(n—m) (=0,1, ---, K; m=1, 2, .-+, H)}. Taking into ac-
count the fact that x,n) admits one-sided moving average representa-
tion by e,(n)’s, we can also get the present result as a direct conse-
quenceof a general theory of regular full rank process ([10], p. 147).
We shall use the present result in the next section and see that the
assumption Ee(n)=¢?>0 (1=0, 1, ---, K) is playing a definite role in
our estimation procedure.

It is interesting to note that Parzen [7] has stressed the impor-
tance of the representation of time series in which the disturbances
have the properties that least squares estimates are the efficient esti-
mates. It is stated that “There is no guarantee that such representa-
tions exist. What to do in this case represents a development of the
theory of statistical inference on stochastic processes which in my
opinion would not be merely an extension of classical statistical infer-
ence.” ([7], p. 45). Our present procedure uses such a representation as
a pivot to get the final estimate, and it gives an example that the
analysis of multiple time series is not completely reduced to the cross-
spectral analysis if the latter is confined to the mere extension of clas-
sical regression analysis into the complex domain.

Obviously our transformed representation (D) is a kind of predictor
formula for the process z;(n) and we are going to identify the necessa-
ry response characteristics and noise spectra through this representa-
tion. Thus it seems to be appropriate to call our present identification
procedure predictive identification.

3. Estimation procedure

There is a fundamental paper on the estimation of the coefficients
of a multiple autoregressive scheme by Mann and Wald [5]. Relation
between the least squares estimation and the causal chain system was
discussed by Wold [11], [12]. Also there are papers by Durbin [4] and
by Whittle [ 9] which are closely related with our present subject.

Here we shall only describe a simple, though not necessarily effi-
cient, estimation procedure for direct applications and very briefly dis-
cuss the consistency of the estimates.. Practical applicability of the
method will be illustrated by some numerical examples. An example of
application to the analysis of a physical process will be discussed else-
where [6]. It is quite desirable to have a practical formula for the
evaluation of sampling variabilities of our estimates. We shall discuss
this in a subsequent paper.

OQur estimation procedure is as follows:
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I First we arrange the records in the order of the speeds of their re-
sponses ; the quickest one as z(n) and the slowest one as xg(n).

We properly select the values of L and M. These are guessed
values of L and M in the original model (B). For typographical sim-
plicity we shall not distinguish these values from the true values but
the difference will be clear from the context. We suggest to do the
whole computation for several sets of values of L and M to get infor-
mations for the selection of L and M. The values of L and M may
change for each set of the following normal equations.

I We solve the normal equation for each ¢;
K . K M+L ,
I§+1Auo C(z;, )+ ;go m2=l Ay C(z4, 2)I—m)=C(;, 2:)(7)

1=1,2,..., M+ L for k=0, 1, 2,00, 1,
1=0,1,2,..-, M+L for k=i+1, 1+2, ..., K,

where C(¢, 7)(!) denotes the lagged sample covariance C(¢, 7)())=
—llv-:gé(n+l) n(n) of observed sequence {£(n), n(n); n=1,2, ..., N}. We
are assuming the mean values of £(n) and »(n) to be vanishing.

III We put

a=Aw  (=1,2,..., L),

«=0 (I>L)

> O

and get d,;, by the relation
auo=fiuo y
&/um=AAum+ Eéu dt!m—l (m=1,2,.--, M).

These {d.,.}’s are the desired estimates of the impulse response funec-
tions {a.;»}. We assume &,,=a,,=0 for j=0,1, ---, 4.

IV We get an estimate a,(f) of the frequency response function
M
a,(f)= 3 aymexp(—2z v —1 fm) by

8(F)= 3 dum exp (—2 ¥ =1 fm) .

V We get an estimate of the power spectral density function »(u,)(f)
of u(n) by

PUY(f)=— Si ,
1— zg{é“ exp (—2z v —1 f1)
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where

> Clx, xk)(l)AAilcl

M+L
=0

S1=C, 2)O0)— 3 '3} Cw, 2)DAm— 3

k=i+1

is an estimate of E&i(n).

VI We compute an estimate fn,(f) of the closed loop frequency re-
sponse function from j to 7 by

[B.,()]=[0,— &, (]
where [ ] denotes a (K+1)X(K+1) matrix and
5u=1 and 5ij=0 (i$j) .

VII The power contribution of the noise source u,(n) to the output
xz,(n) can be estimated by the quantity

4N =N Du)f) §=0,1,2, -+, K.
It is expected that at least approximately

P =2 8u(F)

holds, where (x,)(f) is an estimate of the power spectral density at f
of x,n), which is obtained from the record {x.n); n=1,2, ..., N}. If
this is not the case, some increase of L andfor M would be necessary.
The equality is strict when the original model is strict and an infinitely
long record and M and L greater than or equal to their true values,
respectively, are used for the computation and p(x,)(f) is replaced by
its theoretical value.
The quantity r,,(f) given by

o) =—2A0
S4a

will be used to evaluate the relative contribution of u,(n) to the power
of z(n) at frequency f, and the quantity R,,(f) defined by

Ry()=3ralf) §=0,1,2, -+, K—1

will conveniently be used for graphical representation.

We shall here very briefly discuss the consistency of our estimates.
Under our assumption of A,, {4,.; 7=0,1, ---, K, m=0,1, ---, M}
satisfies the normal equation of the step II when C(x;, x;)()’s are re-
placed by the corresponding E(x;(n+1)z,(n))’s. We have already shown
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in the preceding section the non-singularity of the variance covariance
matrix of {z,(n)(j=t+1, ---, K), z,(m—m)(7=0,1, ---, K, m=1,2, ---,
H)} (H: any finite positive integer). Thus if we can assume the con-
vergence of C(x;, 2,)(!) to E(x;(n+1)x(n)) in probability or with proba-
bility one, we can show the convergence of A,,,,,, properly defined when
the solution of the normal equation does not exist, to A,;, in probabi-
lity or with probability one, respectively. &, @;;m, Si and other related
quantities converge to their theoretical values correspondingly. The
simplest and sometimes most natural assumption in practical situations
would be the assumption of ergodicity of the noise {u,(n); 1=0,1, .-,
K: n=0, +1, +2, ---}. Under this assumption the convergence is with
probability one.

To show the practical applicability of our estimation procedure we
give here some numerical examples. We have used as a realization of

Table 1
o] am dom (L=6, M=6) | dum (L=6, M=2)
0 0 —0.053 —0.052
1 0.12 0.120 0.122
2 0.20 0.178 0.175
3 0.05 —0.033
4 0 —0.048
5 0 0.012
6 0 —0.052

o] am | dum (L=6, M=6) | dum (L=6, M=2)

0 0 0 0
1 —0.10 —0.113 —0.111
2 —0.10 —0.069 —0.068
3 —0.10 —0.146
4 0 —0.067
5 0 0.010
6 0 0.050
Table 2
] aum | dom @=6, M=6) | Gom | dum (L=6, M=6)
0 0.25 0.197 0 0
1 0.15 0.148 -0.1 —0.114
2 0.08 0.057 —0.2 —0.169
3 0.03 —0.056 —0.1 —0.151
4 0 —0.050 0 —0.077
5 0 0.005 0 0.007
6 0 —0.055 0 0.064
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our noise {u,(n) (2=0,1; n=1, 2, ---, 500)} the results of two indepen-
dent observations of a physical process and generated z,(n) (=0, 1) by
the formula (B). We assumed x,(n)=0 for n<0. The results of com-
putation are illustrated in Tables 1 and 2. From the result of Table 1
we can see that our estimate is rather insensitive to the change of M.
This tendency has been observed in numerous other practical applica-
tions and suggests a kind of robustness of our procedure. The result
illustrated in Table 2 is concerned with the numerical example of arti-
ficial series reported in [1]. The result shows that our present proce-
dure is quite promising even in the identification of this kind of model
where a,,#0, if only the specification of the model or the ordering of
the variables is correct. We shall discuss this last point in the next
section. It also should be mentioned that in an example of application
to a physical process [ 6 ], the present procedure gave a quite reasonable
result, where the conventional cross-spectral method of estimation of
the frequency response function completely failed.

4. Bias due to incorrect specification

Here we shall analyse the effect of incorrectly assuming a,;,+#0 for
some (i, j). We treat the case where K=1, i.e., the 2-dimensional
case. Thus as our original form we have

M
2(M) = 33 Goim B:(0— M) +%(1)
M
xy(n)= m2=1 Aiom To(n—m) +u(n) .
After whitening of wu,(n) and u,(n) we get
L M+L
2()= 3 Aun Zo(n—m)+ 3 Aun x,(n—m)+e(n)
M+L L
x(n)= m2=1 Aym To(n—m)+ ’“2=1 A 2(n—m)+ey(m) .
We are assuming A,,=0. If we incorrectly specify the model as
M+L L
z(n)= MT:O Ciom To(m—m)+ "z.xl Cim Ty(N—m) +7(n)

and apply the method of least squares we shall have to solve the fol-
lowing normal equation:

"33 bun C(2, 20—+ 3 61 (o 2 —m)=C s, 2))
1=0,1,2, .., M+L,
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M L
33 bian Clan, 2)(—m)+ 33 buin Cla, 2)0—m)=Clar, 2)0)
=12, ---,L.

Here we assume that our computation is based on an infinitely long
record and C(x,, x,)())=Ex(n+1)z;n). Then, from the definition of the
model, we have

M+L L
m§=}l Ajon C(25, )l —m)+ 1"2:1 Ay C(y, 2)1—m)=C (1, 7)(0)
1=1,2,.--, M+ L,

M+L L
"lZ:‘,l Agom C (20, z)(1—m)+ El Ay C(xy, 2)—m)=C (21, ,)()
1=1,2,.--, L.
We also have

Clas 2)0)= "3, Aum Cleos 20(—m)+ 3 Auin Clan, z)(—m)

+C(ey, 20)(0)
where
C(e1, 2)(0)= Ao C (e, 2,)(0)
= Ao C(e1, &)(0) .

Thus the bias By;,=¢im—Aim is given as

—Biw -
B;w+z _
B B

—-B;xz -

—~C(xo, 20)0) o« «C(xo, X M+L) C(x1, Zo)(—1) s C(x1, 2 —L) 51
Clas, @Y M+L)- - - C(a, 2)0) Clar, T M+L—1)- - Cas, 7Y M)
C(x0, x1X1) e oo C(xo, 21Y1—M—L) C(x1, 21X0) <o Clx1, 1) L-1)

Lo, miXL)  oo-Clan@X—M)  Clay, oiXL—1)  -+-Clas, &:X0) -

—Aoio Ces, €1X0) —
0
x H
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where the elements of the last vector are all zeros except the first one.
As the inverse matrix is positive definite we can see that the following
relation holds:

C100=Bioy= Ay C(e;, &)(0) X (positive number) .

Taking into account the relation @;0=Ai, this result tells us that by
missing to specify a;,=0 we shall introduce into the estimate of Q05
the bias By, which is of the same sign as Ay, or a,, This effect is
clearly seen in our numerical example shown in Table 3. The result
was obtained by using the same data as the result of Table 2 but with
incorrect specification of the order of variables. The present observa-
tion will be of help to understand why it is possible that we sometimes
get an estimate of a,, with unexpected sign.

Table 3
o] @m | dum =6, M=6) | aim | dum (L=6, M=6)

0 0 0.232 0.25 0

1 —-0.1 —0.048 0.15 0.210
2 —0.2 —0.118 0.08 0.072
3 | —0.1 —0.119 0.03 —0.067
4 0 —0.010 0 —0.016
5 0 0.045 0 0.011
6 0 0.072 0 —0.051
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