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Summary

The present paper is concerned with the estimation of the transi-
tion distributions of a Markov renewal process with finitely many states.
A natural estimator of the transition distributions is defined and shown
to be consistent. Limiting distributions of this estimator are derived.
A density for a Markov renewal process is developed to permit the
definition of maximum likelihood estimators for a renewal process and
for a Markov renewal process.

1. Preliminary concepts and definitions

The general theory of statistical inference in Markov processes be-
gan with Bartlett’s paper [2]. Later developments are presented in
Billingsley’s book [4] and his expository paper [5], both of which ap-
peared in 1961. We refer in particular to the development of maximum
likelihood estimators for the transition probabilities of a Markov chain,
either discrete or continuous parameter, by Billingsley [4] and more
recently by Albert [1].

The present paper is concerned with the estimation of the transition
distributions of a Markov renewal process with finitely many states,
which extends and unifies some aspects of the results in the special cases
of discrete and continuous parameter Markov chains. In section 2 a
natural estimator of the transition distributions is defined and shown to
be consistent. Limiting distributions of this estimator are derived in
section 3. A density for a Markov renewal process is developed in sec-
tion 4 to permit the definition of maximum likelihood estimators for the
special case of a renewal process in section 5 and for a general Markov
renewal process in section 6.

The constructive definition given in [18] of a Markov renewal pro-
cess (MRP) with m (<o) states is briefly as follows. One is given a
matrix of transition distributions (Q,;) where each @Q;; is a mass func-
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tion defined on (—oo, o) satisfying @Q;;(x)=0 for x<0 and f‘,Q,-,(oo)=1,
j=1
(1<i<m). One is also given an m-tuple of initial probabilities (pi, p:,
.+ +, p,) Which satisfies p,=0 and i p,=1. Consider any two-dimensional
j=1

Markov process {(J,, X,); n=0} defined on a complete probability space
that satisfies X,=0 (a.s.), P[J,=k]=p. and

P[Jn::ky Xnéx l ¢]0v JU ] Jn—l’ le tt Yy Xn—l]=QJn_1,k(x) (a.S.)

for all z€(—oo,0) and 1<k<m. The matrix (p;;) is defined by p;;=
Qi (). If p,;>0, set Fy;=p;/Q:;, while if p;;=0, then let Fy; be arbi-
trary. The integer-valued stochastic processes {N(t); t=0}, {Ny(t);t=0}
are defined by N(t)=sup {n=0: iéoX,gt}, N,(t)=the number of times
J,=j for 0<k<N(t), and N,,(t)=the number of times J,=% and Je,,=J
for 0<k<N(t). Then the stochastic process {Ni(t), Ny(t), - - -, Na(t); t=0}
is called a Markov renewal process determined by the given initial prob-
abilities and matrix of transition distributions.

The following consequences of the above definitions, derived in [13],
will be used below.

P[Jn:j' CIOr Tt Jn—Z! Jn—1=i]=ptj
(1'1) P[Xn§x|'f|h Tty Jn-h Jn—-lzi’ Jn=j]=Fij(x)
PIX, <, -+, Koy St Ju; 0201=T] Frnr, 0@

ﬂl_.

for 0<n,< -+ <m., the last equality holding with probability one.

It is assumed throughout that the MRP is irreducible, recurrent,
and that F,,=H, for 1<j<m. This last assumption incurs no loss of
generality as is pointed out in [14].

Estimators for the transition probabilities @, ,(x) are defined on sample
functions of the MRP over [0,¢{]. These sample functions of the MRP
are equivalent to the sample functions (Jy, J, « - *) Iyws Xis Xay + +5 Xyw)-
Let X,, denote the holding time of the jth visit to state ¢, so that
{X,;;1<i<m,1<j<N(1)} is simply a relabeling of {X;; 1<1<N()}.

2. Definition and consistency of a natural estimator
Consider the estimator defined by

2.1) Qulm; =D Hx; 1),

where ¢, 2>0,

@ buO=NOING, Bl =NO" 3 do—Xa),
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and where ¢(u) equals one if =0 and zero otherwise. IZ(x; t) is there-
fore the ordinary empirical distribution function determined from the
sample, of random size N(t), of the holding times in state ©. Interpret
Q..,(x; t) to be zero if N, (t)=0.

The estimator (2.1) is a natural combination of estimators used in
Markov chain inference and in classical inference for fixed sample size.
Derman [8] has studied ,,(t) as an estimator for the transition prob-
abilities of a Markov chain, with the small difference that the total
number of transitions, N(t), is not random. The empirical distribution
function for non-random sample size has been studied extensively (c.f.
Darling, [7]).

THEOREM 2.1. The estimator (2.1) is uniformly strongly consistent
as t— oo in the sense that

(2.3) max sup | Qu(@; )—Qu(x) | —0
with probability one.
ProOF. Rewrite (2.3) as
max sup | [N:,(8)/ Nit)— P} Hi(z3 )+ Pl Hila; ) — H(@)]|
Smax | Niy(£)/ Ni(t)—ps, | +max sup | H(x; t)—Hy(x)]| .

Since Ny(t)— oo (a.s.) by the regularity of the MRP, then one concludes
from the Glivenko-Cantelli theorem for non-random sample sizes, that

supIIZ(x; t)— H(x)| —0 (a.s.). The proof is completed by showing that
[N.,(t)/ Ni(t)—pi;] — 0 (a.s) for 1<4, j<m. Let k, denote the state visited
after the Ith visit to state <. Then

NyH)-1 N(E)

(2.4) 2 0 SNGOS 2 deyy

where 4§, , denotes the Kronecker delta. By the Strong Law of Large
Numbers for Markov Chains or for MRP [14], both the right and the
left hand sides of (2.4), when divided by N(t), converge to p,; with
probability one.

3. Asymptotic distribution of the natural estimator

The limiting distributions of the quantities in (2.1) and (2.2) may be
obtained as consequences of the central limit theorem for MRP. (Cf.
Theorem 7.1 of [14]. See also the papers by Taga [16], Hatori [10], and
Keilson and Wishart [11].) This theorem may be stated as follows, For
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a real measurable function f, set
3.1) W,)=3 fTos, I Xo).
Set
Aa=( 16l 2)MQue),  A=34a

Bu=|"[f(,k, FdQu(z),  B.=3}Ba

if the integrals exist. Let p,;, and g denote the mean first passage
times from state ¢ to j in the MRP and in the corresponding Markov
Chain, {J,: n=0}, respectively. Write

(3.2) me=33 At/
and
(33) ot=—mi+ 3 Boub/ut,

+23 3 g‘.‘ A A (i el — 1) [ pi

r=1 8+i

Set m,=m,/p,; and B,=a/p,;. Then, under the assumptions that these
moments exist, ¢ [W,(t)—tm,] converges in law to a normal distribu-
tion with zero mean and variance B,. To apply this result in the proofs
of the theorems of this section it will only be necessary to produce the
appropriate function f and to compute the corresponding moments.

THEOREM 3.1. For fized 14, j, &, (t[D:i(8)—p.,), tV[Hi(x; t)— H(x)])
converges in law as t— oo to a bivariate normal r.v. with means zero
and covariance matrix (s;;) given by

(3.4) on=puPi;(1—0i;) , on=pH(x)[1—H(x)], 0p=0y4=0.

PrRoOF. Let w, and w, be arbitrary constants. To prove the as-
ymptotic joint normality it suffices to show that

(3.5) WDy, (8) — ps] +wit A Hx ; 1) — Hy(x)]

converges in law to a normal r.v. for all w, and w,. We rewrite (3.5) as
the product of [t/N,(t)]t7'* and a sum of the form (8.1) by using the
function f defined by

(3.6) f(r, 8, 9) = {wiloy—pi] +wle(x—y)— H(x)l} oy, .

For this function
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A, =wa,p,;— pi;]+wne, [ H,(x)— H(x)]=0
and
B,= {w?[prj +p%j —2p,;0.;]+ wi[ H,(x)+ Hi(x)—2H,(x)H(2)]} 0,

for 1=r<m; hence m;=0 and the third sum in (3.3) is zero. Then
a =72=1 B, pf/ vt =wip.,[1—p,l+wiH(z) [1— H(x)] .

The variance ¢} is finite, so from Lemma 7.1 of [14] the limiting
distribution of ¢ *w(t) for the f given in (3.6) is normal with zero
mean and variance ¢%/p;;. But t/N(t)— p; (a.s.) so the limiting distri-
bution of (8.5) is normal with zero mean and variance p;0} as required.

The zero correlation between ,;(t) and IZ(m; t) yields the following
results.

COROLLARY 3.2. For fixed 1, J, x, D,,(t) and ﬁi(m; t) are asymptotically
independent.

The asymptotic normality of (3.5) can be used to obtain the limit-
ing distribution of Qt,(x; t).

COROLLARY 3.3. For fized 4,7, z, #[Q.(x;t)—Q.(x)] converges in

law as t— oo to a normally distributed r.v. with mean zero and vari-
ance equal to

3.7 wi Hy(@)p ;[ H(x)—2H (x)p:;+ 03] -
PrROOF. We rewrite t/4[Q, (x5 8)—Q,(x)] as
(3.8) 2 H (5 1) [Doy(t)—pos] +p, [ Hi(x; ) — Hi(w)] .

By a well-known convergence theorem (Cramér [6], section 20.6) the
limiting distribution of (3.8) is the same as that of

(3.9) t2H () [D () — pis ]+ tl/zptj['[;[i(x ; )— Hy(x)] .

With the particular choice w,=H,/(x) and w,=p,;, (3.9) is just the same
as (3.5) and the proof is complete.

The asymptotic normality given in Corollary 3.3 can be extended to
the finite dimensional distribution of the r.v.’s {W{,,‘(t)=Q¢,(a;k; t)—Q. ()
for 1<%, j<m and 1<k<s}.

THEOREM 3.4. For fized s, the distribution of {t'*W,,(t); 1=<1, j<
m, 1<k=<s} converges in law as t— oo to an m*s-dimensional normal r.v.
with zero mean and covariance matrix (@ ...) given by
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(3.10) Qi g, uvw = Iliiatupu[Hi(min [, 20 )Di+ Hi(x) Hy(2) (5111 —2p;,)] .

PROOF. Let {,; 1<%, j<m, 1<k<s} be arbitrary constants. It
will suffice to show that

(3.11) ALDIIDIRDIP P [
i=1 j=1 k=1

converges in law to a normal r.v. for all real 2,,. We may rewrite
(3.11) as

[N 3 INOING] 2 3 Ao
LN — P NV 25 1)+ 0 N [ ) — Hi@)]} -

As in the proof of Theorem 3.1, the expression may be shown to have
the same limiting distribution as

[N 35 o) 3 35 e
- [Ny @) Hi(@) + Doy Ni(t) Hi(r 5 ) —2p Ni(t) Hi(,)] -

This in turn can be written as a product of [t/N,(t)lt-"* and a sum of
the form (3.1) by using the function f defined by

fr, s, 9)=pi' iZﬂ ﬂuZ.‘_li IE A45x0r¢
- [H(2:)d,;+ pise(— ¥)—2H (2:)py4] -
For this function,
A= l‘x_l1 El Hig é kgl Rtjkart[-H.i(xk)prl +p(jHr(xk) - 2H,(x,,)pu] =0

for 1<r<m; hence m;=0 and the third sum in (8.3) is zero. Then the
variance is given by

o§=§l B, p /et

which may be shown to reduce to

v=1

. [-H-t(xk)IIt(xw)ajn - 2E(xk)E(xw)pto + Hi(min [xk ’ xw])piv] .

a=> > >3 X Eltjklww(llu/llu)pu
i=1 j=1 k=1 w=1

The variance ¢? is finite, so by the same argument as in Theorem 3.1,
the limiting distribution of (3.11) is normal with zero mean and variance
;. The required covariance matrix (3.10) is obtained from the co-
efficients of 2,;4,..,, thereby completing the proof.



ESTIMATION OF THE TRANSITION DISTRIBUTIONS 417

Consider a renewal process; that is, an MRP with one state for
which m=1, p,=1, N,(t)=N;(t)=N(). From Theorem 3.4 the limiting
distribution as t— oo of N(&)“[H(x,; t)— Hi(x,)] for 1<k<s with s fixed,
is normal with zero means and covariance matrix (a,,,) defined by

@, =[Hy(min [, z,]) — H(=:) H(x.)] -

Consider the Markov chain obtained from the MRP by letting the
holding times be degenerate at one, that is, Hy(x)=e(x—1), p.,=pk.
From Theorem 3.4 one obtains that as t— oo, '[N, (t)/N(t)—p;;] for
1<1, j<m converges to a normal r.v. with zero means and covariance
matrix given by

Qigu0= flﬁatupu[an — Dl -

This is equivalent to Derman’s result on the limiting distribution of
n'2N,(n)/N«(n) (c.f. Billingsley [5]).
The results of this section imply that the finite dimensional distri-

butions of the stochastic processes {t"’[QU(x; t)—Q.y(x)]: x=0} converge
to those of a certain Gaussian process. It is also possible to prove that
these processes converge weakly. In particular, it is an immediate con-
sequence of the weak convergence of empirical processes with random
sample sizes, obtained by Pyke [15], that for each fixed 4, the processes
{[N,(t)]"’[fL(x; t)—H,(x)]: =0} converge weakly to a tied-down Wiener
process. It is then a straightforward matter to show the weak con-
vergence of the processes mentioned in the first sentence of this para-
graph.

4. Density for a Markov renewal process

A density for an MRP is defined in a manner similar to the defini-
tion of a density for a continuous time Markov process by Billingsley
[4] and Albert [1]. From the constructive definition of an MRP given
in section 2, almost all sample functions for an MRP up to time ¢ can
be represented as the finite tuple R(¢)=(Jy, Ji, - ) Jwwr Xis =+ +» Xyvewr)-
Almost every sample point may therefore be represented as a point in
Q= GQ,, where 2, is the (n-+1)-fold Cartesian product of {1,2, ---, m}

n=0

%[0, ). Let A, be the product Borel field on 2 generated by all sub-
sets of {1,2, ---,m} and the ordinary Borel sets on [0, ). Let A be
the smallest o-field containing each f,, 0=Sn<co. For convenience we
will assume the underlying probability space on which the MRP is de-
fined is (2, A). On this probability space the measure P is given as
follows. For any #=0 and integers 1<j,<m, 0=<1=mn,
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(4'1) P[N(t)=nr Jo-_-jo, ) anjm Xlgah M) Xnéan]
n-1
=pJDSC (1—-H,, ()] ;l;l; pj,,f,,HdHJ,,(le)

where
U=C— L) —Ly—+»+ — 2,
and

Co={(;, 23, -+, 2,): 0=2, =, 1=k=<m and u,=0}.
In particular,
P[N()=0, Jo=j0]=p,o[1—H,0(t)] .

This follows directly from (1.1) since the conditional distribution of
{X;,1<i<n} given {J;,,0<i<n} is that of » independent r.v.’s with
distribution functions Hj, respectively.

The appropriate density of the MRP can now be exhibited. Let g
be Lebesgue measure on [0, o], let 1 be counting measure on {1,2, ---,
m}, and let o, be the appropriate product measure on (2,, 4,). For

each set B e i define a*(B):i a.(BN%,), which determines a measure
n=0
on (2, ). As a consequence of (4.1) one obtains

THEOREM 4.1. If each H, is absolutely continuous with density func-
tion he, then one may write P(B)=S f(v)do*(v), B e, where
B
P,[1-H,@®)]  if v=04,

n—1
Pjo[l - Hj,,(uc)] ,I;l; Dy, jthfk(ka)

4.2 =
4.2)  f(v) iWf V=Jo, ** 1 Jus X1, * + +, Ln) With u,>0

0 otherwise.

For the special case of exponential holding times (i.e. a continuous
Markov process), the density (4.2) reduces to Albert’s density (c.f. The-
orem 3.2, [1]). For a renewal process, i.e. an MRP with one state, the
sample functions are of the form R(t)=(X,, X, -+, Xyw) and for H(x)
absolutely continuous (4.2) reduces to

(4.3) f(v)=[1—H(ut)]]jlh(wi) if o=@, 2, -+, %)

5. Maximum likelihood estimation for a renewal process

A maximum likelihood estimator (MLE) may be obtained by maxi-
mizing (4.3) over a selected class of densities for an observed sample
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function, R(t)=(X), ---, Xyw). Three examples are considered in this sec-
tion, namely, (a) the classical case in which % is exponential with un-
known mean, and two ‘less parametric’ examples in which A is known
to have (b) a non-decreasing failure rate or (c¢) a non-increasing density.
The latter two cases are chosen because they illustrate the applicability
of ML estimation to more interesting non-standard situations.

Throughout the remainder of the paper assumes that each H; is ab-
solutely continuous, and whenever ¢ is fixed denote N(t) and U, by N
and U respectively.

‘a. Exponential density with parameter A; that is, h(x)=2exp (—1x).
From (4.3), the log-likelihood is equal to

(5.1) Nlog z—z(é,l X, + U) .

The maximum of (5.1) occurs at i=NJt, so the MLE for h(x) is given
by

(5.2) h(z)=[N/t] exp [— Nax/t] .

The MLE (5.2) is strongly consistent since N/t— 2 (a.s.). This example
is the well known one of the Poisson process for which the estimator
i is the same for a fixed-time sample as for a fixed-number-of-events
sample.

b. Increasing failure rate (IFR) densities; that is, the class of den-
sities for which the failure rate ¢(y) € k(y)/[1— H(y)] is increasing. Mar-
shall and Proschan [12] and Grenander [9] have derived the MLE for
g(x) based on a sample of non-random size (i.e. U=0 and N(t)=n) to be

0 for y <Y,

min max (v—u)[(n—u)(Yuy — Y, )+ -
(5.3) q(y)= v2i+l usi
+m—v+1)(Y, - Y, )] for YV,=y<Y,, 1=5i=n-—1)

oo for y=Y,
where {Y;; 1<¢<m} and {X;; 1<1<n} are arranged in increasing order.

By an argument similar to the one used in [12], the MLE for ¢(x) can
be derived for a renewal process.

THEOREM 5.1. Let (Y,,Y;, ---,Yy) be an ordered sample from an
IFR renewal process. If Y, <U<Y,, for 1=4%4,=N—1 or U>Yy and
1,=N then the MLE of q(y) is given by
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0 Jor y<Y,

. min max (v—u)[c,+ - - - +¢,_1]
(5.4) qy)={ vzit1 usi )
Sfor Y, sy<Y;; (1S1SN-1)

oo Jor y=2Yy
where
(N—t+1) (Y, —Y) Jor 1=i<4,
(5.5) a={ N=—w)(Yi—Y)+U-Y,) for i=i,
(N=9) (Y1 —Y) Sfor 4,w<i<N.

If U<Y,, q(y) is given by (5.3).

PROOF. Since h=gexp(—Q) and 1—H=exp(—Q) where q(y)=h(y)/
[1—H(y)] and Q(y)=S: g(?)dz, the log likelihood function can be written
as .

N N
(5.6) log L=3}log ¢(Y)— > Q(Y)—QU) .

For q(y) increasing,

2 QY2 X (N —i) (Vo= Ya(¥)

and
Q2 S Vs~ Yda(T)+U Y )o(,) .

Let {¢;; 1=i{<N} be defined by (5.5). From (5.6)

N N-1
(5.7 log L< ?:‘1 log q(Y,)— g cq(Y).

Without the restriction that ¢(Y,)<q(Y)<---=<q(Yy), the maximum of
the right hand side of (5.7) is achieved for ¢(Y;)=c¢;* for 1<i{<N. (For
1=N, ¢;! is not defined, but the limiting argument used in [12] to ob-
tain (5.3) can be applied to get cy=o00.) However, (Y )<q(Y)< - <
q(Yy) defines a convex set and the right side of (5.7) satisfies Brunk’s
conditions, so Brunk’s result (Corollary 2.1, [3]) can be applied to obtain
the maximum at (5.4). If U<Y;, QU)=0 and (5.7) reduces to the cor-
responding statement for U=0, which is maximized by (5.3).

The MLE for h(y) is obtained from (5.3) or (5.4) in the natural way,
that is

(5.8) ) =qw) exp| - | 4z ] .
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The MLE (5.4) is now shown to be a consistent estimator, so that
(5.8) is a consistent estimator of h(y).

THEOREM 5.2. If q(y) is imcreasing, then for every t,

q(t—)_s_limt inf ¢(t,) élimlsup at)=q(t+) .
t to t 20

ProOF. The proof follows directly from the consistency of (5.3)
(c.f. Theorem 4.1, [12]) after the observation that

N=)Yu—Y)se=(N—i+1)(Y.,—Y), 1=<i=N-1.

This type of solution has also been obtained for the MLE of a decreas-
ing failure rate density for non-random sample size (c.f. section 6, [12]).

c. Non-increasing densities; that is, the class of densities for which
M) =h(x,) if z,<x;. For non-random sample size, Grenander [9] has
derived for this case the MLE for a density A(y) and for the corres-
ponding distribution function H(y) (c.f. 8.1, [9]). For an ordered sample
y, -+, Y,) of fixed size the MLE of H(y) is the smallest concave major-
ant of the empirical distribution function. The MLE for k(y) can be
written in the same form as (5.3), namely

max min n[(v—u)(Y,—Y,)],

v2i+l ugi

(6.9 hy)= if V,<y<Y., 0<i<n—1)
0 if y>Y,

where Y, is the left end point of the support of H{(y).

For a renewal process with a non-increasing density, a MLE can also
be obtained, within the class H ={h: H(co)<1}. Let (X, ---, Xyw) be
a sample from a renewal process over [0,t], and let (Y}, ---,Y,) denote
{X;:1=1=<N(t)=n} arranged in increasing order. Let 4, be the sub-
class of non-increasing densities h € 4 which satisfy

¥
S h(y)dy=a,
Y

for some fixed constants a;,a;, ---,a,. For 1=<i¢<m and Y, ,<y<Y,,
define
(5.10) M y)=a,/(Y.:—Y:-)=h,

and for y>Y, let h*(y) be any function which is non-increasing on
[Y., o) and satisfies

S: ¥ @)dy=ea.
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For h € 4 ,, one has
T A1 - H@)Sa [T h=0( by -, k)

that is, the maximum of the likelihood function over 4, is attained at
a density of the form (5.10) for some choice of the constants a;, 1=i<
n. Thus the MLE for he 9 is obtained by maximizing over all 9,
c Y for which the a,s are non-increasing. Specifically, the MLE for

he.9 is that function A which maximizes ®(a, ki, - - -, h,) subject to
(5.11) 0<a<kl, h=hy=--=h,=0,
(5.12) [ @dy=1-a, | m@dysa.

0

If Yio-1<U§Y¢0, 1<4,<n, (5.12) can be written as

(5.13) 3 (¥~ +h U =Y, )=1-a,
(5.14) (=Y Hh Y-+ i*@drsa.

The integral term in (5.14) can be set equal to zero without affecting
the likelihood, so (5.14) becomes

(5.15) 3} A(Y~Yo)+h (Y, —U)<a.

i=1y

But &(a, hy, - - -, h,) satisfies Brunk’s conditions and (5.11), (5.18), and
(5.15) define a convex set, so Brunk’s iterative procedure (c.f. Corollary
2.1, [3]) yields the required maximum.

If U>Y,, (5.12) can be written as

(5.16) > hi(Y,—Yi_1)+SZn W y)dy=1—a
and
|, m*@Mya.
Pick h*(y) to be zero for y>Y,. Then (5.16) can be written
(5.17) ShF-Yo)=1-a, | m@dy=0.
Again (5.11) and (5.17) define a convex set and Brunk’s procedure can

be applied.
The h* chosen will possibly have mass at y=oco, which should not
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be surprising since U>Y, represents the information that there is an
observation larger than all others. The arbitrary character of h* for
y>Y, results in a similar arbitrariness in the MLE. For y>Y, the MLE
can be extended in any manner which is non-increasing and maintains
the required area.

6. Maximum likelihood estimation for a Markov renewal process

Throughout this section, write N@®)=N, U,=U, Jyu,=J whenever ¢
is fixed. From (4.2) the likelihood function for a sample function (J;,
le tt JN; Xh Tty XN) is

N-1
(6.1) L=p,[1-H,U)] ;l;l;pj,‘ jk+1hjk(Xk+l)

which may be rewritten as

m._m m_ Vit
(6.2) L=p;, 7T 1T 0«1 = H, @) {1 1T h(Xer) -

Consider a maximum likelihood problem for which the quantities
{Pi, 159, k<m} and {Hy(z),1<i<m} are not functionally dependent.
The likelihood function then factors into two parts given by

(6:3) po, T 1T ()
and
(6.4) [1—H,@) T 1T hi(Xa)

i=1 k=1

which can be separately maximized. If, furthermore, the H;’s them-
selves are not functionally dependent, then (6.4) can be factored into m
parts given by

N ()
(6.5) ’];l; hi(Xix) 1#Jdvw
and
Ny(8)
(6.6) [1-H,;U)] ;f:fl ho(Xse)

which ean be maximized separately.

Thus the problem of obtaining an MLE for an MRP in which (p));
H,H, .-, H, are not functionally related, reduces to three separate
maximum likelihood problems: (i) the problem of maximizing (6.3) which
is equivalent to finding the MLE p,, of the transition matrix of a Markov
chain, (ii) the problem of maximizing (6.5) which is equivalent to finding
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the MLE H, for m—1 densities based on non-random sample sizes, (iii)
the problem of maximizing (6.6) which is equivalent to finding the MLE

H of the density of a renewal process. Solutions of problem (i) have been
obtained by Billingsley [4]. Problem (ii) is just the classical maximum
likelihood problem for which many solutions are well known. The solu-
tion of problem (iii) has been obtained for a few cases in section 5.

In particular the MLE for an element Q,,(x) of the transition dis-
tribution matrix is given by

f’u(t)ﬁt(x ; t) if t=Jyw

(6.7) Q@ )=1 "~ o
D (O H(x; t) if iy -

If a functional relation exists between (p,,), H;, H;, ---, H, the problem
is much more difficult.

THE BOEING COMPANY
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